

Genetic and Environmental Contributions to Anxiety

Robert Althoff, MD, PhD

www.mghcme.org

Disclosures

I have the following relevant financial relationship with a commercial interest to disclose:

- Investigator: NIMH, NIDA
- Grand Funds (Medical Student Training Program Faculty Sponsor and PI) : Klingenstein Third Generation Foundation
- Ownership Equity (Partner): WISER Systems, LLC

Objectives

- By the end of this brief session, you will be able to:
 - Describe the basic concepts of genetics and genetic epidemiology
 - Discuss the heritability of anxiety disorders
 - Discuss gene x environment interactions and correlations as they related to anxiety disorders
 - Explain specific genes associated with anxiety disorders

Central Dogma

• DNA \rightarrow RNA \rightarrow Protein

"Rna syn" by Fred the Oyster. The source code of this SVG is valid. This vector graphics image was created with Adobe Illustrator.. Licensed under GFDL via Wikimedia Commons - https://commons.wikimedia.org/wiki/File:Rna_syn.svg#/media/File:Rna_syn.svg

MASSACHUSETTS GENERAL HOSPITAL PSYCHIATRY ACADEMY

www.mghcme.org

(http://creativecommons.org/licenses/by/3.0)], via Wikimedia

Commons

Genetic and Environmental Contributions to SUD

Twin Studies

Monozygotic (MZ) twins Share 100% of DNA

Dizygotic (DZ) twins Share 50% of DNA

Twin Models

Heritability of Anxiety Disorders

Table 1. Summary and meta-analysis of twin studies for anxiety disorders							
Disorder	Reference	Number of studies	Ν	Sex	a ²	c ²	e ²
PD	Hettema et al.,9 2001	3	9007	M, F	0.43 (0.32-0.53)	-	0.57 (0.47-0.68)
Agoraphobia	Kendler et al.,10 1992	1	2163	F	0.39	-	0.61
	Kendler et al.,11 2001	1	2396	Μ	0.37	-	0.63
GAD	Hettema et al.,9 2001	2	12 924	Μ	0.32 (0.24-0.39)	-	0.68 (0.61-0.76)
SAD	Scaini et al.,12 2014	5	20 433	M , F	0.27 (0.12-0.42)	0.04 (-0.01-0.09)	0.69 (0.59-0.79)
Animal phobia	Van Houtem et al.,13 2013	5	17 904	M , F	0.32 (0.22-0.44)	-	-
Situational phobia	Van Houtem et al.,13 2013	4	16 474	M , F	0.25 (0-33)	-	-
Blood-injury-injection phobia	Van Houtem et al., ¹³ 2013	3	10 741	M, F	0.33 (0.28-0.63)	-	-

Confidence intervals are shown in parentheses.

MASSACHUSETTS GENERAL HOSPITAI

PSYCHIATRY ACADEMY

Additive genetic effects (a^2) represent the genetic component of variance due to the average effects of single alleles and are known as heritability; shared environment effects (c^2) are explained by events that happen to both twins, affecting them in the same way; non-shared environment effects (e^2) are explained by events that occur to one twin but not the other, or events that affect either twin in a different way.

GAD, generalized anxiety disorder; PD, panic disorder; SAD, social anxiety disorder.

Heritabilities range from 20-50% for the anxiety disorders, with the highest heritability for panic

From Shimada-Sugimoto, Otowa, & Hettema (2015)

www.mghcme.org

How Specific is the Heritability?

From Tambs et al (2009)

The Environment

"What is inherited is the manner of reaction to a given environment"

- Dr. Elmer G. Heyne (1912 – 1997), Wheat Geneticist

Possible Roles for the Environment

- Direct effects on initiation and maintenance of anxiety
 - Especially true for disorders such as phobias, PTSD, Acute Stress Disorder, panic
- Gene-environment correlation
 - Genetic factors associated with anxiety and with environments that promote them are correlated
 - For example, parents who are more anxiety prone are more likely to set up a anxiogenic environment for their children
- Gene-environment interaction
 - Genetic risk only evident when placed in a fertile environment

Gene–Environment Interaction

Data from Gatt et al (2009)

www.mghcme.org

Specific Molecular Genetic Risks

- Broad heritabilities not useful clinically
- Are there specific genes that place one at risk?
- Results from either:
 - Candidate gene studies: studies that examine specific genes thought to be associated
 - Genome-Wide Association Studies (GWAS): studies
 that look at markers across the entire genome
 - There have been 13 published GWAS indexed in PubMed in just the past 12 months

Molecular Genetic Findings

- Single-nucleotide polymorphisms (SNPs) from GWAS most likely to be involved:
 - *TMEM132D* on 12q24.3– associated with panic disorder (with replication). Is involved with oligodendrocyte differentiation.
 - SLC6A4 Serotonin transporter gene associated in family studies and candidate gene studies.
 - MAGI1 Associated in meta-analyses with neuroticism. Involved in protecting DNA against alkylating agents.
- SNP-based polygeneic risk scores have been shown to be predictive of neuroticism

Summary

- Anxiety disorders are heritable, but probably due to multiple genes with additive effects
- There are likely gene-environment correlations and interactions involved in the expression of anxiety disorders
- Thus far, there are no reliable markers for predicting anxiety disorders using genetics

Thank you!

Email me at: ralthoff@uvm.edu

Follow me on Facebook: <u>www.facebook.com/childpsychvt</u>

Or Twitter: <u>@childpsychvt</u>

Visit our website: <u>http://childemotionregulationlab.org</u>

Image Credit: U.S. Department of Energy Human Genome Program

