PSYCHOSOMATIC MEDICINE/
CONSULTATION-LIAISON PSYCHIATRY

PROGRAM AGENDA

THURSDAY, OCTOBER 22, 2020

4:00 – 4:15 PM Welcome and Overview Theodore A. Stern, MD

4:35 – 4:55 PM Catatonia, NMS, and Serotonin Syndrome Christopher M. Celano, MD

4:55 – 5:15 PM Neurocognitive Assessment at the Bedside Judith Restrepo, MD

5:15 – 6:10 PM Panel Discussion Moderator: Theodore A. Stern, MD Panelists: Christopher M. Celano, MD, Judith Restrepo, MD

5:45 PM Break

6:10 – 6:30 PM The Risk of QTc Interval Prolongation with Psychotropics Christopher M. Celano, MD

6:30 – 6:50 PM Seizure Disorders and Non-Epileptic Seizures Franklin King, MD

6:50 – 7:10 PM Factitious Illness and Malingering Theodore A. Stern, MD

7:10 – 8:00 PM Panel Discussion Moderator: Theodore A. Stern, MD Panelists: Christopher M. Celano, MD, Franklin King, MD

8:00 PM Adjourn
FACULTY

Christopher M. Celano, MD
 Associate Director, Cardiac Psychiatry Research Program,
 Massachusetts General Hospital Psychiatrist, Massachusetts General Hospital
 Assistant Professor, Harvard Medical School

Judith Restrepo, MD
 Staff Psychiatrist in Consult Liaison Psychiatry at MGH
 Instructor in Psychiatry HMS

Franklin King, MD
 Attending Psychiatrist and Instructor in Psychiatry
 Massachusetts General Hospital & Harvard Medical School

Theodore A. Stern, MD
 Chief Emeritus, Avery D. Weisman Psychiatry Consultation Service
 Director, Thomas P. Hackett Center for Scholarship in Psychosomatic Medicine
 Director, Office for Clinical Careers
 Massachusetts General Hospital
 Ned H. Cassem Professor of Psychiatry in the field of Psychosomatic Medicine/Consultation
 Harvard Medical School
 Editor-in-Chief, Psychosomatics
WELCOME AND INTRODUCTION

Theodore A. Stern, MD
DELIRIUM: DIFFERENTIAL DIAGNOSIS, EVALUATION, TREATMENT, AND PREVENTION

Theodore A. Stern, MD
The Diagnosis, Treatment, and Prevention of Delirium

Theodore A. Stern, MD
Chief Emeritus, Avery D. Weisman Psychiatry Consultation Service,
Director, Thomas P. Hackett Center for Scholarship in Psychosomatic Medicine,
Director, Office for Clinical Careers,
Massachusetts General Hospital;
Ned H. Cassem Professor of Psychiatry in the field of Psychosomatic Medicine/Consultation,
Harvard Medical School;
Editor-in-Chief, Psychosomatics

Introduction: Agitation and Delirium

- Medical and surgical inpatient floors, as well as intensive care units (ICUs), are filled with agitated and confused patients
 - While such units provide the forum for dramatic, life-saving interventions...
 - They are uniquely stressful
 - high tension
 - danger
 - high technology
 - death

General Principles

- Don’t assume psychiatric symptoms are due to a long-standing psychiatric disorder
- Don’t assume that psychiatric symptoms are a reaction to being in a critical care environment
 - Initiate a search for the underlying cause of the symptoms
 - Identify the symptoms that require treatment
 - Treat symptoms as specifically as possible
Assessment of Mental Status

- Evaluate the ABCs
 - affect
 - behavior
 - cognition

The Mental Status Examination

- Appearance & behavior
 - hypervigilant, frightened, poor eye contact, agitated, psychomotorically retarded
- Speech
 - rambling, rapid, incoherent, fluent
- Mood
 - depressed, fearful, tearful, irritable, anxious, angry, apathetic

The Mental Status Examination

- Affect
 - despondent, anxious, perplexed, blunted
- Thought
 - paranoid, loose associations, hallucinating
- Cognition
 - disoriented, decreased concentration, confused, impaired memory
Screening Tests and Tools for Assessment of Cognition

- Mini-Mental State Examination
 - MMSE
- Montreal Cognitive Assessment
 - MoCA
- Confusion Assessment Method for the ICU
 - CAM-ICU

Agitation

- Excessive, usually non-purposeful motor activity associated with internal tension
- Varies from mild restlessness to combativeness
- Can signify clinical deterioration
- “ICU psychosis” is a misleading term
 - Implies cause & effect between being in the ICU and becoming psychotic
 - Agitation, delirium, and psychosis are not the same

Delirium: Definition

- An organic brain syndrome with a clouded state of consciousness, distractibility, decreased attention, sensory misperceptions, and a fluctuating course
 - “Acute brain failure”
Delirium: Signs & Symptoms

- Clouded consciousness
- Perceptual disturbances
- Incoherent speech
- Disturbed sleep-wake cycle
- Increased or decreased activity
- Disorientation and memory impairment
 - A fluctuating course
 - Related to an organic factor

Delirium: Associated Features

- Anxiety
- Fear
- Irritability
- Depression
- Euphoria
- Apathy
 - These features may steer clinicians to make another diagnosis

Treatment...

- Since treatment is predicated on the diagnosis
 - Identify the etiology as specifically as possible
 - Be sure to rule-out life-threatening causes
Delirium: Life-Threatening Causes

- Wernicke’s encephalopathy; Withdrawal reactions
- Hypoxia; Hypoperfusion of the CNS
- Hypoglycemia
- Hypertensive encephalopathy
- Intracerebral hemorrhage; Infection
- Meningitis/encephalitis; Metabolic
- Poisoning
- Seizures

Delirium: Differential Diagnosis

- Central nervous system
 - Vascular
 - hypertensive encephalopathy, intracranial hemorrhage, vasculitis, stroke
 - Neoplastic
 - space-occupying lesions, paraneoplastic syndrome
 - Seizure
 - post-ictal state, complex partial seizures

Delirium: Differential Diagnosis

- Cardiopulmonary
 - Cardiac arrest
 - Congestive heart failure
 - Respiratory failure
 - Shock
- Infection
 - Meningitis/encephalitis
 - Sepsis
 - Sub-acute bacterial endocarditis
Delirium: Differential Diagnosis

- Endocrine/metabolic
 - Acid-base disturbance
 - Fluid/electrolyte imbalance
 - Diabetic ketoacidosis
 - Hypoglycemia
 - Hepatic failure
 - Renal failure
 - Thyroid dysfunction

- Intoxication/withdrawal
 - Alcohol
 - Anesthetics
 - Anticholinergics
 - Hallucinogens
 - Psychostimulants
 - Narcotics
 - Sedative-hypnotics

- Nutritional deficiency
 - Folic acid
 - Niacin (pellagra)
 - Thiamine (Wernicke’s, Korsakoff’s)
 - Vitamin B_{12} (pernicious anemia)

- Poisons
 - Carbon monoxide
 - Heavy metals (lead, mercury)
 - Toxins
Common Delirium-Inducing Drugs

- Antiarrhythmics
 - Lidocaine, mexiletine, procainamide, quinidine
- Antibiotics
 - Penicillin, rifampin
- Anticholinergics
 - Atropine

Common Delirium-Inducing Drugs

- Antihistamines
 - Non-selective: diphenhydramine, promethazine
 - H₂ blockers: cimetidine, ranitidine
- Beta-blockers
 - Propranolol
- Narcotics
 - Meperidine, pentazocine

Treatment of Agitation

- Correct metabolic and systemic abnormalities
- Eliminate drug toxicity
- Remove the offending agent(s)
- Administer appropriate antidote(s)
 - e.g., Physostigmine, naloxone, flumazenil
Treat Drug Withdrawal

- Obstacles to prompt treatment
 - Emergent admissions may result in sudden discontinuation of abused drugs
 - History of use may be difficult to establish in intubated or unconscious patients
 - Physical signs of withdrawal are non-specific
 - No laboratory tests can confirm the diagnosis

Alcohol & Sedative-Hypnotics

- Alcohol withdrawal
 - Benzodiazepines, phenobarbital, neuroleptics
- Sedative-hypnotic withdrawal
 - Symptom-onset a function of half-life; the longer the half-life the longer the latency
 - Symptom frequency and intensity greatest with half-life of 10-20 hours
 - Treatment best with a longer half-life agent

Narcotic Withdrawal

- Syndrome generally mild
 - Discomfort; delirium uncommon
 - Treatment involves replacement with a longer half-life agent of the same class
 - Clonidine is effective in reducing symptoms
Haloperidol

- A high-potency agent
- Trivial effects on heart rate, blood pressure, respiratory drive
- Often used IV despite lack of FDA approval for IV use
- Used IV it precipitates with phenytoin and heparin;
 - Flush the IV line first
- Dose used depends on symptom severity

Haloperidol

- Onset of action: 10-30 minutes
- Hypotension, if it occurs, is associated with hypovolemia
- High-dose use associated with QTc prolongation and Torsades de Pointes
- Extrapyramidal side effects are rare with IV use

Haloperidol

- Titrate the dose to the symptoms
 - If mild, use 0.5-2 mg
 - If moderate, use 5-10 mg
 - If severe, use 10 mg or more
- Repeat doses when necessary, every 15-30 minutes
- Adjust dose to clinical course
Other Neuroleptics

- Droperidol
 - More sedating than haloperidol
 - Lowers blood pressure more than haloperidol
- Chlorpromazine
 - More anticholinergic, more apt to induce hypotension, and more likely to induce arrhythmias than haloperidol

Atypical Antipsychotics

- Olanzapine
- Quetiapine
- Risperidone
- Clozapine
- Ziprasidone

Alternative Agents for Agitation...

- Dexmedetomidine
 - Highly selective alpha-2 adrenoreceptor agonist with sedative and analgesic properties
- Valproate
 - Especially when irritability or impulsivity present
- Propofol
Alternative Agents for Agitation

- Narcotics
 - Morphine typically used
- Paralytics
 - If used, sedation still required
- Benzodiazepines
 - Lorazepam
 - used PO, SL, IV; has no active metabolites
 - Midazolam
 - rapidly-acting; causes amnesia and respiratory depression

Benzodiazepines...

- Midazolam
 - half-life, 1-12 hrs; 2 mg; fast
- Oxazepam
 - half-life, 5-15 hrs; 15 mg; slow
- Lorazepam
 - half-life, 10-20 hrs; 1 mg; intermediate
- Alprazolam
 - half-life, 12-15 hrs; 0.5 mg; intermediate-fast

Benzodiazepines...

- Chlordiazepoxide
 - half-life, 5-30 hrs; 10 mg; intermediate
- Clonazepam
 - half-life, 15-50 hrs; 0.25 mg; intermediate
- Diazepam
 - half-life, 20-100 hrs; 5 mg; fast
- Flurazepam
 - half-life, 40 hrs; 5 mg; fast
- Clorazepate
 - half-life, 30-200 hrs; 7.5 mg; fast
Benzodiazepines

- Diazepam
 - IV: onset, 2-5 min; starting dose, 2-5 mg
 - PO: onset, 10-60 min; starting dose, 2-5 mg
- Lorazepam
 - IV/IM: onset, 2-20 min; starting dose, 1-2 mg
 - SL: onset, 2-20 min; starting dose, 0.5-1 mg
 - PO: onset, 2-60 min; starting dose 0.5-1 mg

Non-Pharmacological Treatment

- Re-orientation
- Adjustment of physical environment
- Reassurance
 - Determine why are the patient is anxious to guide interventions
 - Clarify misconceptions
 - Remain calm

Prevention of Delirium

- Minimize risk factors for delirium
- Monitor lab values and vital signs
 - e.g., Oxygenation, hematocrit, blood pressure, drug levels
- Administer antipsychotics prophylactically
 - Administration of olanzapine reduced incidence of post-operative delirium from 41% to 15% in elderly joint replacement patients
Conclusion

- Medically-oriented psychiatric consultants can help evaluate and manage critically ill patients as well as prevent psychiatric and neuropsychiatric symptoms
 - Psychopharmacologic skills
 - Psychotherapeutic skills
 - Medical knowledge

Selected References...

Selected References...

Thank You...

• Questions?
CATATONIA, NMS, AND SEROTONIN SYNDROME

Christopher M. Celano, MD
Catatonia, NMS, and Serotonin Syndrome

Christopher M. Celano, MD, FACLP
Associate Director, Cardiac Psychiatry Research Program, Massachusetts General Hospital
Assistant Professor of Psychiatry, Harvard Medical School

October 22, 2020

Catatonia: How common is it?

- 7.8-9.0% prevalence rate
 - Highest rates in non-psychiatric (i.e., medical) settings and in patients undergoing ECT.
- 1.6-5.5% of all patients seen on psychiatry consultation service
 - Prevalence higher for older patients
- Up to 46% of cases may have etiology that is not primarily psychiatric

When are you called?

- Staff reports the patient is “Playing POSSUM”
- Perseveration (speech or behavior)
- Oppositionality to all requests
- Speech that trails off or is whispered
- Slowed response to questions or commands
- Undernourished (reports of decreased PO intake)
- Motionless but awake
Diagnosing Catatonia: DSM-5

DSM-5 requires 3 or more of the following:

- Catalepsy
- Waxy flexibility
- Stupor
- Agitation
- Mutism
- Negativism
- Posturing
- Mannerisms
- Stereotypies
- Grimacing
- Echolalia
- Echopraxia

American Psychiatric Association 2013

Bush-Francis Rating Scale

- Excitement
- Immobility/stupor
- Combativeness
- Autonomic Abnormality
- Impulsivity
- Mutism
- Staring
- Posturing/catalepsy
- Grimacing
- Echopraxia/echolalia
- Stereotypy
- Mannerisms
- Verbigeration
- Rigidity
- Negativism
- Waxy flexibility
- Withdrawal
- Automatic Obedience
- Mitgehen
- Gegenhalten
- Ambitendancy
- Grasp Reflex
- Perseveration

Bush 1996

Challenges with Diagnosis

- Clarifying specific symptoms can be difficult
 – Rrigidity vs. gegenhalten vs. negativism
- Inconsistency between scales
- Symptoms occur on a spectrum
- Wide variety of manifestations
Prototypes of Catatonia

- The Distant Mute
 - Mutism, immobility, interpersonal withdrawal
 - Team may be concerned this is volitional
- The Waxy Stiff
 - Catalepsy, waxy flexibility, rigidity
 - Often identified by physicians; may misattribute to psychiatric illness
- The Broken Record
 - Echophenomena, verbigeration, hyperactivity
 - Often misdiagnosed as delirium
- The Stubborn Grouch
 - Negativism, repetitive movements, excitement
 - Medical workup often not completed due to lack of cooperation.

Azarn 2013

Pathophysiology of Catatonia

- Disruption in the tracts connecting the basal ganglia and the cortex, leading to relative hypodopaminergia.
 - Dorsolateral prefrontal and anterior cingulate / medial orbitofrontal → akinetic mutism, dysautonomia
 - Lateral orbitofrontal → imitative and repetitive behaviors
 - Supplementary motor / motor / posterior parietal → rigidity, initiation and termination of movement
- Hyperactivity of the supplementary motor area and presupplementary motor area → motor control, initiation and inhibition of movement

Fricchione 2008, Walther 2019

Pathophysiology of Catatonia

- GABA and serotonin may be involved
 - The dopaminergic projections in the brain are modulated by GABA-ergic and serotonergic neurons.
 - Benzodiazepines (GABA-A agonists) are helpful
 - GABA-B agonists (baclofen) are harmful and can induce catatonia
 - Serotonergic medications also may induce catatonic symptoms.
- Glutamate may also play a role
 - Anti-NMDA receptor encephalitis can cause catatonia.
 - NMDA receptor antagonists have been used as treatments in some cases.

Mann 1986, Rogers 2019
Evaluating Catatonic Patients

- Observe patient while trying to engage in conversation.
- Scratch your head in an exaggerated manner.
- Examine the patient’s arms for cogwheeling. Move the arms with alternating lighter and heavier force.
- Move patient’s arm into different positions and observe whether they remain in position.
- Ask the patient to extend his/her arms. Place one finger beneath each hand and try to raise it slowly after stating, “Do not let me raise your arms.”

Evaluating Catatonic Patients

- Extend your hand and state, “Do not shake my hand.”
- Reach into your pocket and state, “Stick out your tongue. I want to stick a pin in it.”
- Check for grasp reflex.
- Check the chart for reports from prior 24 hours. Check for PO intake, VS, and incident.
- Observe the patient indirectly daily to observe for other catatonic symptoms.

Potential Causes of Catatonia

- Medical Illness
 - Seizures
 - CNS structural damage
 - Encephalitis (e.g., anti-NMDA) or other CNS infection
 - SLE with or without cerebritis
 - Disulfiram
 - Phencyclidine
 - Neuroleptic exposure
 - Corticosteroid exposure
 - Porphyria
 - Post-partum state
 - Iron deficiency

- Psychiatric Illness
 - MDD
 - Bipolar Disorder
 - Psychotic disorders

Carroll 1994, Denysenko 2015
Workup for Catatonia

- Complete Blood Count, Comprehensive Metabolic Panel
- Creatine Kinase (to look for rhabdomyolysis)
- Iron studies
- Toxicology screens
- Other bloodwork as indicated
 - Cultures
 - HIV
 - Paraneoplastic panel
 - Autoimmune studies
- Consider head CT, brain MRI, and EEG

Catatonia vs. Delirium

- DSM-5 states that catatonia cannot be diagnosed when symptoms are present exclusively in the setting of delirium
- Clinical practice suggests that most patients with neuromedical etiology for catatonia also have delirium
- 12-37% of patients with delirium may have features of catatonia
 - More commonly associated with hypoactive delirium and more common in women
 - Common features of catatonia include excitement, immobility, mutism, negativism, staring, withdrawal

Oldham 2015, Grover 2014

Subtypes of Catatonia

- DSM-5 specifies:
 - Hyperactive
 - Hypoactive
 - Mixed level of activity
- Malignant Catatonia (aka Lethal Catatonia)
 - Characterized by severe muscle rigidity, hyperthermia, and autonomic instability
 - Delirious Mania
 - Neuroleptic Malignant Syndrome
 - Serotonin Syndrome

APA 2013, Mann 1986
Management of Catatonia

- Identify the underlying cause.
 - Perform full psychiatric evaluation to identify mood or psychotic disorders.
 - Obtain collateral information about patient’s mood and behavior prior to admission.
 - Perform medical workup, especially for those with other symptoms of medical illness.
- Frequent vital signs
- Supportive care
- Remove possible culprit medications
- Initiate treatment with medications or ECT

Treatment of Catatonia: Benzodiazepines

- Intravenous lorazepam is greatly preferred
 - Quick onset of action
 - Despite a shorter half-life than other benzos, effective clinical activity may be longer because tissue distribution is less rapid and extensive
 - Also demonstrates a higher binding affinity for GABA_A receptor
- Initial dose of 2mg
 - Follow-up dose based on response and sliding scale of suspicion
- If established efficacy or diagnosis certain, continue with standing regimen
 - 8-24mg/day is typical
 - Taper very slowly after improvement

Denysenko 2015

Treatment of Catatonia: ECT

- Effective in 85-90% of cases; 60% of cases that fail medication
- Should be considered for failure to respond to lorazepam in 48-72 hours, malignant symptoms, excited subtype
- Maintenance ECT often required
Treatment of Catatonia: Alternatives

- NMDA receptor antagonists
 - Amantadine (18 cases)
 - May also have dopamine agonist activity
 - Start at 100mg daily
 - Titrate by 100mg every 3-4 days to maximum of 400mg in 2-3 divided doses
 - Memantine (9 cases)
 - Start at 5mg bid
 - Increase to 10mg bid if ineffective
- Antiepileptic medications
 - Carbamazepine (7 cases)
 - 100-1000mg daily
 - Valproic acid (5 cases)
 - 600-4000mg daily
 - Topiramate (4 cases)
 - 200mg daily

Beach 2015

Treatment of Catatonia: Alternatives

- Antipsychotic medications
 - Hypothesized to work through 5-HT1A agonism and 5-HT2A antagonism, which may lead to increased dopamine in the prefrontal cortex.
 - Aripiprazole (9 cases)
 - 3-30mg daily
 - Clozapine (9 cases)
 - 150-300mg daily
 - Olanzapine (7 cases)
 - 2.5-20mg daily
 - Risperidone (2 cases)
 - 0.5-8mg daily
 - Ziprasidone (2 cases)
 - 40-160mg daily

Beach 2015

Treatment Algorithm

- Intravenous lorazepam (initial test dose, then 6-8mg daily)
- Electroconvulsive therapy (at least 6 treatments)
- Glutamate (NMDA) antagonist (amantadine or memantine)
- Antiepileptic medication (carbamazepine or valproic acid)
- Atypical antipsychotic (aripiprazole, olanzapine, clozapine)

Beach 2015
Neuroleptic Malignant Syndrome (NMS)

- No DSM diagnostic criteria
- Expert panel criteria:
 - Exposure to dopamine antagonist (or removal of dopamine agonist) within past 72 hours
 - Hyperthermia
 - Rigidity
 - Mental status alteration
 - CK elevation (>4 times upper limit of normal)
 - Autonomic instability
 - Hypermetabolism
 - Exclusion of other medical or substance-induced causes

Guerra 2011

NMS: Complications and Treatment

- Complications
 - Rhabdomyolysis
 - Seizures
 - Respiratory failure
 - Acute kidney injury
 - Sepsis
 - Acute MI
 - Acute liver failure
 - Pulmonary embolism
- Mortality rate 5.6%
- Treatment
 - Remove offending agent
 - Similar treatment to catatonia

Modi 2015

Serotonin Syndrome (SS)

- Sometimes considered a subtype of malignant catatonia
- Symptoms:
 - Spontaneous clonus
 - Inducible clonus AND agitation or diaphoresis
 - Ocular clonus AND agitation or diaphoresis
 - Tremor AND hyperreflexia
 - Hypertonia AND hyperthermia AND ocular clonus or inducible clonus
- Classically induced by combination of MAOI with serotonergic medication
- Now more commonly seen with polypharmacy or overdose
- Clues to Serotonin Syndrome
 - Look for it in patients with antidepressant overdose
 - Look for it in any patient on >4 psychiatric medications
 - Consider it in all catatonic patients

Dunkley 2003
Treatment of Serotonin Syndrome

- Supportive treatment and wash-out is usually all that is needed
 - May use benzodiazepines to manage agitation or if catatonic symptoms are present
 - Short-acting antihypertensives
- If this is not working, can consider cyproheptadine (5-HT1A and 5-HT2A antagonist)

References

References

References

NEUROCOGNITIVE ASSESSMENT AT THE BEDSIDE

Judith Restrepo, MD
Neurocognitive Screening

Judith Restrepo, MD
Attending in Consultation-Liaison Psychiatry – Massachusetts General Hospital
Instructor in Psychiatry – Harvard Medical School
October 2020

Screening objectives

• To guide diagnostic hypotheses & further screening/testing
• To facilitate more accurate diagnoses
• To guide appropriate treatment (medication and supportive)
• To help patients, families, and co-treating physicians understand symptoms

What is bedside neuropsychological screening?

• A judiciously employed, systematic assessment of a pt’s arousal, cognitive, perceptual, and affective statuses/capabilities

• Formal neuropsychiatric testing is for neuropsychologists
 — More rigorously quantitative
 — Less diagnostically oriented
Order of Operations

- Known medical/neurologic contributions
- Level of arousal
- Attention + Complex attention
- Language and visuospatial
- Memory
- Executive function

Hierarchy of Functions

State-dependent vs Channel-dependent functions

- Alertness/Arousal
 - Attention, Motivation
 - Language, Praxis, Object ID, Memory/Memories, Executive Fxn

STATE DEPENDENT ASSESSMENT
Arousal

- Maintenance of arousal is critical to assess cognition
- Importance often skinned/escapes notice
- Fluctuation can occur and this may be assessed at multiple points in time
- Three general disruptions
 - Hyperarousal
 - Hypoarousal
 - Mixed concerns (delirium)

Assessment of Arousal

- Always assume pt will not participate in exam
- Adaptation to environmental change
 - Response to verbal/visual stim
 - Move the patient (head of bed/arms legs)
- Activity
 - Maintenance of response
- Latency
 - Reaction times/consistency
- Task persistence
 - Completes tasks without direction

Level of Arousal

- Terms are often misused/misunderstood; describing state is preferred
- Common terms
 - Hyperarousal
 - Often looped in with agitation, hyperalertness, colloquial use of “manic”
 - Awake/alert
 - Somnolence/Lethargy
 - Obtunded
 - Stupor
 - Coma
Attention

- Does not exist without normal alertness
- Required for appropriate assessment for all following functions
- Considerations
 - Selective vs Sustained vs Directed
 - Attention vs Concentration vs Spatial

Assessing Attention

- Assessment often adequate by interview alone
- Many levels exist

<table>
<thead>
<tr>
<th>Initial Attention</th>
<th>Selective Attention</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic or voluntary orientation to sensory stimuli</td>
<td>Selection of stimuli from array of competing sensory stimuli</td>
<td>Maintenance of focus on stimuli to complete task</td>
</tr>
</tbody>
</table>

Schoenberg 2011

- Rule of thumb: bedside assessment should include vigilance, maintenance under distraction, and alternating focus

Motivation & Mood

- Aberrations of either can → false positives
- Esp. vulnerable to misinterpretation
- Assess by history & observation

- “Organic” mimics of idiopathic phenomena
 - Depression vs Apathy/Abulia
 - Blunted/inappropriate affect vs Dysprosodias
 - Affective lability vs Pathological affect

- ASK pt
- Compare spontaneous vs elicited (esp recent recall)
CHANNEL DEPENDENT FUNCTIONS

Language and Praxis

- Speech ≠ Language (dysarthrias; modalities)
 - Consider mechanics
- Fluent/Non-Fluent ≠ Sensical/Nonsensical

- Praxis
 - Many types; ideomotor screened
 - “Blow out a match,” “flip a coin,” etc.
 - Errors: inability, perseveration, vocalization, simulation w/body part

Assessing Language

- Expressive
 - Fluency
 - Articulation
 - Organization
- Receptive
 - Naming
 - Comprehension
- Repetition
- Prosody
Memory

- Includes encoding, storage and retrieval
- Intact sensory, motor, arousal and attentional skills are prerequisite
- Many individual factors affect performance
 - age, education
 - anatomy
 - material (i.e., Verbal, Visual)
- Should include recent memory and remote memory

Memory

- Content
 - Declaritive/Explicit: semantic (facts), episodic (events)
 - Implicit: procedural (skills); conditioning
- Timing
 - Immediate: working “memory”
 - Recent: min-days
 - Remote: weeks-years
- Encoding
 - Remote vs. anterograde

Assessing Memory

- Assessment must include
 - Learning
 - Immediate
 - Delayed
 - Recognition Format (is the problem with encoding or retrieval)
- Often part of extended mental status exam
 - Can include intermediate memory task
On the fly tests

- 3-Words, 3-Shapes
- Hidden $ variant
- List Recall
- Drawing Recall

3 words – 3 Shapes

Weintraub, (2013)

Executive function

- Frontal Lobes are most heavily involved (directly and indirectly)
 - Damage also impacts memory, motor, attention, language and comportment
 - Three syndromes
 - Dorsolateral
 - Orbitofrontal
 - Medial Frontal
Assessing Planning

- Collateral is often key as patients often lack awareness
- Disinhibition
 - Frontal lobe reflexes (release signs)
 - Contradictory verbal commands “don’t take this”
 - Go-no-go
- Motor and Sequencing
 - Perseveration (loops or ramparts)
 - Finger tapping
 - Luria
 - Rapid alternating movement
- Abstraction
- Organizational abilities
 - Clock

Examples of frontal-subcortical network dysfunction findings

Other channel-dependent functions

- Construction/visuospatial
 - R hemisphere & parietal – “big picture”
 - L hemisphere & frontal – details
 - Neglect ----- 2x simultaneous stimulation

- Gnosis
 - Distinguished from anoma by ability to use objects
Standardized screens

MMSE
- Orientation x10: Mixed function of attention, short term memory
- Registration x3: Attention
- Calculation/WORLD x5: attention/working memory
- Recall x3: Short term memory
- Language x5: name, repeat, read, write
- Construction x1
- Praxis x3

MOCA

Bedside screening in action

Dementia Subtype Hypothesizing

What’s next?

- You may be done
- Imaging
- EEG (for fine-grained delirium questions)
- Formal NPT
- Use findings to formulate questions & make predictions
References

PANEL DISCUSSION

Moderator: Theodore A. Stern, MD
Panelists: Christopher M. Celano, MD, Judith Restrepo, MD
THE RISK OF QTc INTERVAL PROLONGATION WITH PSYCHOTROPICS

Christopher M. Celano, MD
The Risk of QTc Interval Prolongation with Psychotropics

Christopher M. Celano, MD, FACP
Associate Director, Cardiac Psychiatry Research Program
Massachusetts General Hospital
Assistant Professor of Psychiatry, Harvard Medical School

October 22, 2020

Topics for Discussion

- QTc interval and its measurement
- Risk factors for QTc prolongation
- Relationships between psychiatric medications and QTc prolongation
- QTc monitoring in clinical practice

What is the QT interval?
How to Measure QTc

- Pick an appropriate lead on the ECG.
 - Usually II, V2, or V3.
- Measure the QT interval.
- Measure the heart rate or RR interval.
- Calculate the QTc.

Measure the QT interval

![ECG waveform with annotations](image)

9 boxes + 10 msec
QT = 370 msec

QT intervals are HR-dependent

![Graph of QT interval vs. heart rate](image)
Measure the RR interval

17 boxes + 10 msec
RR = 690 msec

QT = 370 msec

Correction Formulae

<table>
<thead>
<tr>
<th>Method</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bazett</td>
<td>$QTc = \frac{QT}{\sqrt{RR}}$</td>
</tr>
<tr>
<td>Fridericia</td>
<td>$QTc = \frac{QT}{\sqrt{RR}}$</td>
</tr>
<tr>
<td>Framingham</td>
<td>$QTc = QT + 0.154 \times (1000 - RR)$</td>
</tr>
<tr>
<td>Hodges</td>
<td>$QTc = QT + 1.75(\text{HR} - 60)$</td>
</tr>
</tbody>
</table>

QTc Correction Methods

Patel 2016
Normal Ranges

<table>
<thead>
<tr>
<th>Rating</th>
<th>Adult Men</th>
<th>Adult Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>< 430 msec</td>
<td>< 450 msec</td>
</tr>
<tr>
<td>Borderline</td>
<td>431-450 msec</td>
<td>451-470 msec</td>
</tr>
<tr>
<td>Prolonged</td>
<td>> 450 msec</td>
<td>> 470 msec</td>
</tr>
</tbody>
</table>

However, we generally become more concerned if QTc > 500 msec.

Moss 2003

Why do we worry about QTc prolongation?

• Torsades de pointes (TdP)
 – “Twisting of the points”
 – May lead to sudden syncope or dizziness

Risk Factors for QTc Prolongation

• Female gender
• Increased age
• Congenital Long QT Syndrome
• Structural Cardiovascular Disease
• Electrolyte abnormalities
• Hepatic dysfunction
• Other medications that prolong QTc
• Metabolic inhibitors

Beach 2013
Psychiatric Medications and QTc

• Antipsychotic Medications
 – First Generation
 – Second Generation
• Antidepressants
 – SSRIs
 – Tricyclic Antidepressants
 – Atypical Antidepressants
• Other psychiatric medications

Antipsychotic medications

• Nearly all antipsychotics prolong QTc, but the degree of prolongation differs substantially among agents.
 • Haloperidol
 – In oral form, haloperidol leads to QT prolongation that is similar to aripiprazole, quetiapine, and asenapine.
 – Intravenous form may lead to higher risk of QTc prolongation, with some caveats.
 – FDA recommends cardiac monitoring for patients receiving intravenous haloperidol.

Antipsychotic Medications

• Second generation antipsychotics

![Graph showing efficacy of antipsychotics vs placebo](image)

Huhn 2019
Antipsychotic Medications

- Second generation antipsychotics
 - Highest risk: ziprasidone and iloperidone
 - Lowest risk: aripiprazole and lurasidone
- FDA warnings
 - Ziprasidone (black box)
 - Quetiapine
 - Intravenous haloperidol
- There may be a dose-response relationship for antipsychotics and QTc, but evidence is mixed.

Antipsychotic Medications and Mortality

- Both first- and second-generation antipsychotics have been linked to ventricular arrhythmias or sudden cardiac death.
 - Case-crossover study (N=17,718)
 - OR=1.53
 - Haloperidol, prochlorperazine, thioridazine, quetiapine, and risperidone were associated with increased risk.
- FDA black box warning for second-generation antipsychotics in elderly patients with dementia.
Antidepressants and QTc

- **SSRIs**
 - Initially thought to be quite safe
 - SADHART, ENRICHD, CREATE
 - FDA warnings:
 - Initial
 - Citalopram should not be prescribed at doses greater than 40mg
 - Citalopram should not be used at doses >20mg in those with liver dysfunction or over age 60
 - Revision
 - Citalopram is not recommended at doses greater than 40mg
 - Citalopram should be discontinued in anyone with QTc>500 ms

Citalopram and QTc

<table>
<thead>
<tr>
<th>Medication and dose</th>
<th>QT prolongation (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citalopram 20mg daily</td>
<td>8.5 (6.2, 10.8)</td>
</tr>
<tr>
<td>Citalopram 40mg daily</td>
<td>12.6 (10.9, 14.3)</td>
</tr>
<tr>
<td>Citalopram 60mg daily</td>
<td>18.5 (16.0, 21.0)</td>
</tr>
<tr>
<td>Moxifloxacin 400mg daily</td>
<td>13.4 (10.9, 15.9)</td>
</tr>
</tbody>
</table>

US FDA 2011

Escitalopram and QTc

<table>
<thead>
<tr>
<th>Medication and dose</th>
<th>QT prolongation (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escitalopram 10mg daily</td>
<td>4.5 (2.5, 6.4)</td>
</tr>
<tr>
<td>Escitalopram 20mg daily</td>
<td>6.6 (5.3, 7.9)</td>
</tr>
<tr>
<td>Escitalopram 30mg daily</td>
<td>10.7 (8.7, 12.7)</td>
</tr>
<tr>
<td>Moxifloxacin 400mg daily</td>
<td>9.0 (7.3, 10.8)</td>
</tr>
</tbody>
</table>

US FDA 2012
Effects of SSRIs on QTc

Castro 2013

<table>
<thead>
<tr>
<th>Medication</th>
<th>N</th>
<th>Difference in QTc (ms)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citalopram</td>
<td>696</td>
<td>10.58</td>
<td>.002</td>
</tr>
<tr>
<td>Escitalopram</td>
<td>360</td>
<td>7.27</td>
<td><.0001</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>135</td>
<td>4.50</td>
<td>.32</td>
</tr>
<tr>
<td>Fluvoxamine</td>
<td>27</td>
<td>-5.00</td>
<td><.0001</td>
</tr>
<tr>
<td>Paroxetine</td>
<td>1486</td>
<td>-1.04</td>
<td>.67</td>
</tr>
<tr>
<td>Sertraline</td>
<td>369</td>
<td>3.00</td>
<td><.0001</td>
</tr>
<tr>
<td>SSRIs</td>
<td>3,079</td>
<td>6.10</td>
<td><.001</td>
</tr>
<tr>
<td>TCAs</td>
<td>1,587</td>
<td>10.01</td>
<td><.001</td>
</tr>
</tbody>
</table>

Beach 2014

SSRIs and Ventricular Arrhythmias

- Evidence is less clear
 - Danish case-time-control study

Weeke 2012
SSRIs and Ventricular Arrhythmias

- Tennessee Medicaid Cohort Study
 - Retrospective cohort study of 54,220 patients receiving high dose citalopram (>40mg daily) or escitalopram (>20mg daily) or equivalent doses of other SSRIs.
 - Neither citalopram nor escitalopram had higher risks of sudden unexpected death or all-cause mortality than other SSRIs.
- Patient-level meta-analysis for escitalopram
 - Escitalopram led to mild 3.5msec increases in QTc, compared to placebo.
 - Rates of cardiovascular side effects were similar between escitalopram and placebo.

Ray 2017, Thase 2013

Tricyclic Antidepressants and QTc

- Tricyclic antidepressants
 - Affect sodium, calcium, and potassium channels
 - Generally are considered to be higher risk for QTc prolongation than SSRIs
 - Have other cardiovascular side effects as well

Atypical Antidepressants and QTc

- Venlafaxine
 - Minimal risk at therapeutic doses (1 case report), low risk in overdose (1%).
- Bupropion
 - Associated with QTc prolongation in overdose; possibly confounded by tachycardia
- Trazodone
 - Associated with mild QTc prolongation in overdose
- Mirtazapine
 - No clear QTc prolongation risk, though it has been associated with a higher risk of SCD or ventricular arrhythmias than paroxetine in one study
- Newest antidepressants (duloxetine, vilazodone, vortioxetine, levomilnacipran, desvenlafaxine, brexpiprazole)
 - Not associated with clinically meaningful QT prolongation

Beach 2013, Jasiak 2014, Allen 2020
Other Psychiatric Medications and QTc

- Lithium
 - Can cause QTc prolongation at levels > 1.2 mmol/L
- Anticonvulsants
 - Not associated with QTc prolongation
- Stimulants
 - Not associated with QTc prolongation
- Benzodiazepines
 - Not associated with QTc prolongation

Skills for QTc Monitoring in Practice

- Know how to calculate a QTc on an ECG.
 - Do not rely on the QTc measured by the machine.
 - Use the Fridericia or Hodge’s formula to correct for heart rate.
- Know the risk factors for QTc prolongation.
- Know which medications are higher-risk.
 - Antipsychotics: thioridazine, ziprasidone, possibly iloperidone
 - Antidepressants: citalopram, escitalopram, tricyclic antidepressants

When to monitor QTc

- Know when to monitor QTc.
 - For patients without significant risk factors and on lower-risk medications, no monitoring is needed.
 - For patients with significant risk factors or on a higher-risk medication, check QTc at baseline, then again at steady-state or when risk factors change (e.g., change in dose).
Association of Medicine and Psychiatry Algorithm

Risk Factors (individual risk score in parentheses)
- Female (1)
- Age >65 years (1)
- comorbidities (e.g., hypertension, diabetes, cardiovascular disease) (1)
- Electrical risks: QTc > 460 ms (2)
- Total Risk Score < 2
- No baseline CTC needed
- Total Risk Score ≥ 2
- Xiong 2020

Association of Medicine and Psychiatry Algorithm

- Check ECG prior to start of medication CTA
- Start lower-risk medication CTA (<30 days) if feasible, then check ECG in 3 months
- Risk score < 5: Obtain ECG in 2-4 weeks (if already on psychiatric medications)
- Risk score ≥ 5: Consider urgent/emergent cardiology referral
- CTA > 500 ms (M)
- CTA > 440 ms (F)
- Start medication; repeat ECG in 2-4 weeks. Repeat ECG when risk factors change or when increasing dose
- Asymptomatic risk factors

References

References

References

References

- Wu CS, Tsai YI, Tsai HJ. Antipsychotic Drugs and the Risk of Ventricular Arrhythmia and/or Sudden Cardiac Death: A Nation-wide Case-Crossover Study. *J Am Heart Assoc.* 2015;4(2).
Seizure Disorders and Non-Epileptic Seizures

Franklin King, MD
Seizure Disorders and Non-Epileptic Seizures

Franklin King IV, MD
Center for Neuroscience of Psychedelics
Center for Anxiety and Trauma Stress Disorders
Mass General Hospital

Overview

• Seizure Disorders
 – Definitions
 – Psychiatric symptomatology
 • Ictal, Peri-ictal, Inter-ictal
 – Treatment

• Non Epileptic Seizures
 – Diagnosis
 – Treatment

Psychiatric Symptoms in Seizure Disorders

• Psychiatric symptoms are common in all phases of seizures
• Anxiety is most common ictal phenomenon
• Depression is most common inter-ictal phenomenon
• Psychosis is associated with post-ictal phase in patients with chronic seizure disorder
Seizure Definitions

- Seizure is an abnormal paroxysmal discharge of cerebral neurons sufficient to cause clinically detectable events that are apparent to the patient or an observer
- Epilepsy is a chronic course of repeated, unprovoked seizures

Seizure Definitions

- Focal Seizure—starts in a particular part of the brain (i.e., the focus)

- Generalized Seizure—involves both hemispheres simultaneously

Seizure Definitions

- Focal Seizures (formerly called partial seizures)
 - May remain limited to focus (or particular hemisphere) or may spread to other hemisphere known as secondary generalization
 - Manifestations depend on part of brain involved
 - Described in terms of how they affect consciousness
 - Focal Seizures with impairment of consciousness or awareness (formerly complex partial seizures)
 - most common type in adults
 - frequently have associated neuropsychiatric phenomena
 - Temporal lobe epilepsy is one example
Seizure Definitions

• *Focal Seizure* manifestations
 – Sensory impairment
 – Hallucinations (gustatory, olfactory, auditory, visual or tactile)
 – Affective symptoms such as fear, anxiety & depression (rage is least common)
 – Automatisms
 – Déjà vu
 – Macropsia, micropsia, dissociation

Seizure Definitions

• *Generalized Seizures*
 – Associated with loss of consciousness or awareness
 – Range from 5-10 seconds of staring spells known as *absence seizures* (*petit mal*)
 – To the longer (3 mins) *generalized tonic clonic* (*grand mal*) which is generally followed by a post-ictal state

Psychiatric Manifestations

• Most common psychiatric manifestations differ in each of 3 seizures phases
 – *Ictal*
 – *Inter-ictal*
 – *Post-ictal*

• Differentiate from primary psychiatric diagnosis
 – proximity to seizure
 – repetitive nature (i.e., seizures generally present with similar symptomatology)
Psychiatric Manifestations

• Ictal
 – Most common with focal seizures (though may also occur with generalized)
 • Fear and anxiety are most frequent
 • Psychosis also seen (especially with TLE)
 • Important to distinguish from primary psychiatric disorder
 – Treatment is focused on underlying seizure disorder
 • Adjunctive SSRI’s, etc are not often helpful

Psychiatric Manifestations

• Post-ictal
 – Post-ictal psychosis comprises 25-30% of psychosis of epilepsy
 – Onset is average of 15-20 years after onset of epilepsy
 – Lucid interval (hours to days) followed by fluctuating:
 • Disordered thought
 • Paranoia
 • Hallucinations (auditory & visual)
 • Mania—grandiosity
 • Behavioral disturbances such as crying, laughing, disinhibition also common
 – Treatment is benzodiazepine +/- antipsychotic

Psychiatric Manifestations

• Antipsychotics with seizures
 – All lower seizure threshold
 – High potency generally less effect on seizure threshold—1st line
 – Atypicals such as risperidone are also okay
 – Clozapine is worst—generally avoid with seizures
Psychiatric Manifestations

- *Inter-ictal* (chronic)
 - Depression, anxiety and psychosis are most common
 - Rates of depression and suicide 4-5x greater in those with epilepsy
 - Risk factors include poor seizure control and focal seizure with impairment of awareness
 - Atypical features and/or dysthymia are common
 - Anxiety, panic, OCD may also be seen

Psychiatric Manifestations

- Treatments
 - AED’s
 - Lamotrigine, carbamazepine, valproate may help stabilize mood
 - Levetiracetam may cause irritability, worsen mood
 - Phenobarbital and topiramate may also worsen mood
 - Antidepressants
 - SSRI’s and TCA’s generally safe (avoid clomipramine)
 - Buspirone may lower seizure threshold
 - ECT
 - CBT and other behavioral treatments

Psychiatric Manifestations

- Virtually any psychiatric symptom can be seen with seizure
- Important to treat due to significant morbidity
Non-Epileptic Seizures

• Psychogenic non-epileptic seizures (PNES)
 – Formerly known as pseudoseizure or hysterical seizure
 – Occurs in approx 10% of patients with intractable seizures
 – ¾ are women
 – Many have history of sexual abuse
 – 25% have epileptic seizures

Non-Epileptic Seizures

• Distinguishing characteristics
 – Events occur with suggestion/provocation
 – Gradual onset and offset of symptoms
 – Responsiveness during event
 – Weeping, speaking, or yelling during the event
 – Asymmetrical clonic activity
 – Head bobbing or pelvic thrusting
 – Rapid kicking or thrashing
 – Prolonged duration of symptoms (> 3 minutes)
 – No EEG abnormalities during the event

Non-Epileptic Seizures

• Differential Diagnosis
 – General Medical Conditions
 • Transient ischemic attack (TIA)
 • Complicated migraine
 • Syncope
 • Hypoglycemia
 • Narcolepsy
 • Myoclonus (from metabolic disturbance)
 – Psychiatric Causes
 • Conversion disorder
 • Somatic symptom disorder
 • Dissociative disorder
 • Panic disorder (simulating partial seizures)
 – Volitional Deception
 • Factitious disorder (goal is to maintain the sick role)
 • Malingering (goal is to obtain secondary gain, e.g., disability income)
Non-Epileptic Seizures

• Presentation of diagnosis
 — Frame diagnosis positively (e.g., “no abnormal electrical activity, no need for AED’s”)
 — Frame spells as functional problem
 — Set the frame that symptoms will improve over time (less frequent, less severe, etc)
 — Introduce the fact that stress and anxiety may make symptoms worse
 — Acknowledge disability caused
 — Describe treatment plan involving multiple specialities

- Non-Epileptic Seizures

• Treatment
 — Introduce as much psychiatric care as patient will allow (e.g., weekly therapy, psychoeducation, CBT)
 — Treat adjunctive symptoms
 — Regular appointments with neurology and PCP
 — Regular physical exam, avoid diagnostic procedures
 — Positive reinforcement when symptoms subside (i.e., continue treatment)
 — Remain vigilant that epileptic seizures may be missed or may co-occur

Conclusion

• Both epileptic and non-epileptic seizures may present with psychiatric symptomatology
• As psychiatrists, we play a key role in multiple domains:
 — Recognizing potential epileptic seizures and referring to colleagues in neurology
 — Treating inter-ictal and peri-ictal phenomena
 — Diagnosing and being a key part of the treatment team in those with non-epileptic seizures
FACTITIOUS ILLNESS AND MALINGERING

Theodore A. Stern, MD
Factitious Illness and Malingering

Theodore A. Stern, MD
Chief Emeritus, Avery D. Weisman Psychiatry Consultation Service,
Director, Thomas P. Hackett Center for Scholarship in Psychosomatic Medicine,
Director, Office for Clinical Careers,
Massachusetts General Hospital;
Ned H. Casse Professor of Psychiatry in the field of Psychosomatic Medicine/Consultation,
Harvard Medical School;
Editor-in-Chief, Psychosomatics

Factitious Disorders: Definition

• Not real, genuine, or natural
• Characterized by:
 — Physical or psychological symptoms that are produced by the individual and are under voluntary control
• Behavior:
 — Acts have a compulsive quality

Diagnostic Categories

• Factitious disorder with psychological symptoms
• Chronic factitious disorder with physical symptoms (Munchausen’s syndrome)
• Atypical factitious disorder with physical symptoms
Factitious Disorder with Psychological Symptoms: Criteria

- Psychological symptoms are apparently under the individual’s voluntary control
- Symptoms are not explained by any other mental disorder
 — but may be superimposed on one
- The goal is to assume the “patient role”
 — it is not otherwise understandable in light of the environmental circumstances (e.g., malingering)

Factitious Disorder with Psychological Symptoms: Features

- Pan-symptomatic complex of psychological symptoms
 — worse when observed
- Claims of memory loss, hallucinations, dissociation, or suicidal ideation
- Suggestibility to addition of symptoms
- Provision of approximate answers
- Strong linkage with personality disorders and substance abuse

Factitious Disorder with Psychological Symptoms: Differential Diagnosis

- Dementia
- Psychosis
- Brief reactive psychosis
- Schizophreniform disorder
- Malingering
Chronic Factitious Disorder with Physical Symptoms

- Munchausen’s syndrome
 - First described by Asher in 1951 (Lancet)
 - Dedicated to Baron von Munchausen
- Alternative labels
 - Hospital hoboes
 - Hospital addicts
 - Malingerers
 - Kopenickades
 - Sufferers of Ahasuerus syndrome

Munchausen’s Syndrome: Characteristic Features

- Laparotomophilia migrans
- Hemmoragia histrionica
- Neurologica diabolica
- Dermatitis autogenica
- Hyperpyrexia pigmentatica

Munchausen’s Syndrome: Useful Pointers

- Multiplicity of scars
- Truculence and evasiveness
- Acute, but not entirely convincing, history
- Wallet with hospital cards
- Time of presentation that predicts care by less experienced staff
Munchausen’s Syndrome: Possible Motives (per Asher)

- Desire to be the center of attention
- Grudge against doctors and hospitals
- Desire for drugs
- Desire to escape from the police
- Desire for free room and board

Munchausen’s Syndrome: Differential Diagnosis

- True physical disorder
- Somatoform disorder
- Hysteria
- Malingering
- Schizophrenia
- Personality disorder
 - Antisocial or borderline

Munchausen’s Syndrome: Dynamics...A Need to Explain...

- Posing and pseudologia fantastica
- Medical arena for presentation
 - Physicians often central figures in childhood
 - Often works in medical profession
- Rootless wandering
 - Search for lost primary love object
- Masochistic self-injury
 - Identification with the aggressor
 - Mastery over early trauma
Munchausen’s Syndrome: Hospital Course

- Dramatic presentation
- Physicians mobilized
- Demands for attention
- Ambivalence manifest
- Hoax is discovered
- Anger erupts
- Discharge AMA without psychiatric consultation

Munchausen’s Syndrome: The MGH Experience

- General description
 - A lightning rod effect for similar cases
- Case examples
 - Gas gangrene
 - Insulinoma
 - Pheochromocytoma
 - Brain abscess

Munchausen’s Syndrome: Treatment

- Universal remedy
 - Till Eulenspiegel (1515)
- Create a rogues gallery
- Invite participation as pseudodoctors
- Apply psychotherapeutic principles
 - Be aware of countertransference
- Encourage psychiatric consultation
 - Attempt to prevent further harm
Munchausen’s Syndrome: Diagnostic Criteria

- Plausible presentation of physical symptoms
 - Under the individual’s voluntary control
 - Leading to multiple hospitalizations
- The individual’s goal is to assume the patient role
 - Not a manifestation of malingering

Moving forward: Conclusion

- Be prepared:
 - To make the diagnosis
 - To identify and manage countertransference reactions
 - To prevent further harm to the patient

Suggested References

Suggested References

Thank you..

- Questions?
- Comments?
Panel Discussion

Moderator: Theodore A. Stern, MD
Panelists: Christopher M. Celano, MD, Franklin King, MD