

Animal Models and Novel Insights into the Neurobiology of ADHD

Pradeep G. Bhide, Ph.D. Professor Florida State University Tallahassee, FL 32306

Disclosures

I have the following relevant financial relationship with a commercial interest to disclose:

Financial Interest in Avekshan, LLC Tallahassee, FL 32311

Animal Models and Novel Insights into the Neurobiology of ADHD

Two Mouse Models

- 1. Prenatal Nicotine Exposure
- 2. Fragile X Syndrome

Prenatal Nicotine Exposure Mouse Model of ADHD

Why this animal model?
 What can we learn from it?

Prenatal Nicotine Exposure Mouse Model of ADHD

- Prenatal nicotine exposure is a significant risk factor for ADHD (Construct Validity)
- The mouse model shows behavioral, neuroanatomical and neurochemical changes that are consistent with those seen in ADHD (Face Validity)
- Stimulants ameliorate the ADHD-like phenotypes in the mouse model (Predictive Validity)

Prenatal Nicotine Exposure Mouse Model of ADHD

Novel Treatment Options: A Mechanistic Approach

www.mghcme.org

Dopamine - ADHD

ADHD – Low dopamine

Stimulant Drugs: Highly Effective

Supra-therapeutic doses: <mark>Significant Abuse Potential</mark>

Dopamine - ADHD

A Mechanistic Approach to Achieve <u>Gradual</u> Increase in Dopamine Release at the Synapse

Dopamine and Kappa Opioid Receptor (KOR)

KOR Activation Reduces Dopamine Release

Dopamine and Kappa Opioid Receptor

Could KOR Antagonism Increase Dopamine Release in the Frontal Cortex?

The selective KOR antagonist norbinaltorphimine (norBNI) increases frontal cortical dopamine and noradrenaline release

GENERAL HOSPITAL PSYCHIATRY ACADEMY

www.mghcme.org

NorBNI versus Methylphenidate

Frontal Cortical Neurotransmitters

DOPAMINE

NOR-ADRENALINE

	MPH (0.75 mg/kg)	Nor-BNI (20 mg/kg)		MPH (0.75 mg)	Nor-BNI (20 mg)
Peak(s) at	1 hr	<mark>2 Peaks: 3 hr, 5</mark> hr	Peak at	1 hr	<mark>2 Peaks: 2.5,</mark> <mark>5.5 hr</mark>
Return to basal	2.5 hr	<mark>6 hr</mark>	Return to basal	2 hr	<mark>6 hr</mark>

The effects of nor-BNI are *slower in onset and longer lasting* than the effects of MPH

NorBNI versus Methylphenidate

Behavioral Effects: Attention and Working memory

	0.5hr	2.5hr	5.5 h	r 24hr
Methylphenidate	\checkmark	Deficit	Defic	it Deficit
Nor-BNI	Deficit	✓	✓	Deficit

The effects of nor-BNI are *slower in onset and longer lasting* than the effects of MPH

NorBNI: ADHD Mouse Model

- Increase in frontal cortical dopamine and noradrenaline
- Improves attention and working memory
- Effects comparable to those of methylphenidate
- Effects gradual in onset and longer lasting

Mouse Model: #2

Fragile X Syndrome

www.mghcme.org

Fragile X Syndrome

Fragile X Syndrome (FXS)

Mutation in the Fragile X mental retardation 1 (FMR1) gene
 # 1 inherited cause of intellectual disabilities
 The most common genetic etiology of autism

Mouse model of FXS

Deletion of the *Fmr1* gene (Fmr1-KO)
 Hyperactivity and impaired nesting behavior

NorBNI and FXS

- Reduces hyperactivity
- Improves nesting behavior
- Effects last up to 3 weeks

Kappa Opioid Receptor Antagonism: ADHD and FXS

- Increases dopamine and noradrenaline in the frontal cortex
- > Improvements in attention, working memory and nesting
- Reduces hyperactivity
- In ADHD mouse model
 - Effects are comparable to those of methylphenidate
 - Effects are gradual in onset and last longer than methylphenidate

Animal Models and Novel Insights into the Neurobiology of ADHD

- Animal models play a critical role in the identification of:
 - \circ Mechanism of action of drugs
 - Molecular targets for drug discovery and development

Acknowledgements

- Florida State University, Tallahassee, FL
 Deirdre McCarthy and Lin Zhang, FSU
- Massachusetts General Hospital, Boston, MA
 Joseph Biederman and Thomas Spencer
- University of Florida, Gainesville, FL
 - David Vaillancourt and Bradley Wilkes

Thank you!

Pradeep G. Bhide, Ph.D. Professor Florida State University Tallahassee, FL 32306

www.mghcme.org