Ultrasound in Neurosurgery: Pediatric Neurosurgery, Hydrocephalus, Endoscopy

Llewellyn Padayachy
Professor and Head:
Department of Neurosurgery
University of Pretoria
South Africa
Ultrasound in Neurosurgery

Diagnostic
- Bedside
 - Craniosynostosis
 - Hydrocephalus
 - Tumors
 - Raised ICP

Intra-operative Navigation
- Tumors
- Hydrocephalus
 - V/P Shunts
 - Multiloculated
 - Endoscopy
- Chiari malformation
- Vascular
- Peripheral nerve surgery

Surgical tool
- CUSA, piezosurgery

Therapeutic modality
- High Intensity Focused Ultrasound (HIFU)
 - Tumors
 - Functional
 - Blood Brain Barrier

Neuromodulation
- Sonogenetics
Bedside diagnosis

- Decrease the amount of CT scans
- Initial/early diagnosis in neonates
- Follow-up assessment of ventricular size
- Insertion of V/P Shunt
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Modality</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/04/2011</td>
<td>02:53:17 AM</td>
<td>N/A</td>
</tr>
<tr>
<td>30/04/2011</td>
<td>04:54:51 AM</td>
<td>N/A</td>
</tr>
<tr>
<td>04/05/2011</td>
<td>03:19:35 PM</td>
<td>N/A</td>
</tr>
<tr>
<td>06/05/2011</td>
<td>08:46:59 AM</td>
<td>N/A</td>
</tr>
<tr>
<td>16/05/2011</td>
<td>03:04:14 PM</td>
<td>N/A</td>
</tr>
<tr>
<td>24/12/2011</td>
<td>10:33:23 PM</td>
<td>N/A</td>
</tr>
<tr>
<td>16/05/2012</td>
<td>10:13:26 AM</td>
<td>CT BRAIN</td>
</tr>
<tr>
<td>15/06/2012</td>
<td>11:06:26 AM</td>
<td>MRI BRAIN</td>
</tr>
<tr>
<td>02/07/2012</td>
<td>09:59:46 AM</td>
<td>CT BRAIN</td>
</tr>
<tr>
<td>06/07/2012</td>
<td>09:36:27 AM</td>
<td>N/A</td>
</tr>
<tr>
<td>03/08/2012</td>
<td>03:08:20 PM</td>
<td>CT BRAIN</td>
</tr>
<tr>
<td>10/07/2012</td>
<td>02:00:16 PM</td>
<td>CT BRAIN</td>
</tr>
<tr>
<td>13/09/2012</td>
<td>08:31:55 PM</td>
<td>CT BRAIN</td>
</tr>
<tr>
<td>14/09/2012</td>
<td>10:21:55 AM</td>
<td>N/A</td>
</tr>
<tr>
<td>15/09/2012</td>
<td>10:48:34 AM</td>
<td>CT BRAIN</td>
</tr>
<tr>
<td>25/08/2012</td>
<td>08:14:41 AM</td>
<td>N/A</td>
</tr>
<tr>
<td>27/08/2012</td>
<td>12:08:56 PM</td>
<td>N/A</td>
</tr>
<tr>
<td>28/08/2012</td>
<td>08:21:20 AM</td>
<td>N/A</td>
</tr>
<tr>
<td>03/09/2012</td>
<td>11:29:04 AM</td>
<td>N/A</td>
</tr>
<tr>
<td>10/10/2012</td>
<td>11:03:53 AM</td>
<td>CT BRAIN</td>
</tr>
</tbody>
</table>

6 month old - 15 CTs in 5 months!

Courtesy: Dr. T. Kilborn
What does this mean?

- Effective dose (mSv) calculates the dose absorbed.
- CXR = 0.01 – 0.02 mSv (1 day background)
- SXR = 0.1 mSv (5 days background)
- CT Head = 2mSv (8 months background).

1 CT Head = 100 CXR’s

1/3 have at least 3 scans
Modern Neurosurgery Theatre

- **Neuronavigation systems**
 - Frame-based and frameless systems

- **Minimally invasive techniques**
 - Microsurgery
 - Endoscopy
 - Endovascular
 - Novel ablation techniques

- **Intra-operative image-guidance**
 - Intra-operative MRI / CT
 - Fluorescence guidance
 - Intra-operative Ultrasound (IOUS)

- **Intra-operative monitoring techniques**
 - Cortical mapping and neurophysiological monitoring (IONS)
In my practice

- Ventricular catheter placement in hydrocephalus (n=127)
- Intra-axial Neoplasm resection (n=102)
- Endoscopic fenestration and catheter placement in multiloculated hydrocephalus (n=56)
- Vascular— (n=9)
- Chiari I malformation (n=16)
- Intramedullary spinal cord tumor (n=8)
Necessities for U/S usage

- **Dural window**
 - Surgical window – fontanelle or craniotomy

- **Sterility**

- **Image quality**
 - Spatial resolution – probe frequency and probe size
 - Acoustic coupling

- **Image display**
 - Orthogonal, dual anyplane and stereoscopic

- **Probe**
 - Linear / phase array probes

- **User Experience**
Benefit of intra-operative imaging
Tumors
IOUS and post-op MRI

IOUS – greater extent of resection due to real-time feedback on tumor volume and location

Very good correlation between IOUS and post-op MRI
Types of probes

- Burrhole probe
- High frequency probe
 - Anterior fontanelle
Assessment of accuracy

Objective

Accuracy 3D: $\sqrt{AP^2 + RL^2 + CC^2}$

Subjective

1) Catheter tip floating in CSF equidistant from the ventricular walls, away from choroid and a straight trajectory from the burrhole

2) Catheter tip touching ventricle wall or choroid

3) Part of catheter tip within parenchyma or failure to cannulate the targeted ventricle completely

*Accuracy is defined as the Euclidean distance between the ipsilateral FOM and the catheter tip

*Hayhurst et al.
Effect of electromagnetic-navigated shunt placement on failure rates.
J. Neurosurg. 2010

Ultrasound-guided placement of ventricular catheters in first-time pediatric VP shunt surgery

Zeitschrift: Child’s Nervous System > Ausgabe 3/2018
Autoren: Marcel Kullmann, Marina Khachatryan, Martin Ulrich Schuhmann
Ultrasound-guided VC placement is as precise as frameless navigated placement. The optimal VC position was associated to a significant lower VC obstruction rate. The frontal position was superior to the occipital. Intraoperative US guidance is fast with almost no extra time and no extra cost. Ultrasound-guided VC placement should become standard of care in VP shunt surgery.
Image-guided Neuroendoscopy

- Real-time intra-operative imaging
 - Ultrasound guidance
 - Intraventricular contrast injection
 - Neuronavigation combined with intra-operative MRI

- Stereotactic-guidance (Neuronavigation)
 - Frameless (electromagnetic)
 - Combined with intraoperative MRI
Electromagnetic neuronavigation guided neuroendoscopy

- 16 children (29 navigated procedures)
- Refines operative planning and intraoperative orientation
- Multiple procedures are often necessary
- High complication rate

J Neurosurg Pediatrics (2010)
Navigated endoscopic surgery for multiloculated hydrocephalus in children
Mattias Schulz, Georg Bohner, Hannah Knaus, Hannes Haberl, Ulrich-Wilhelm Thomale
Neuronavigation and intra-operative MRI

- 5 infants
 - Helpful in redefining targets
 - Documenting brain and CSF shift
 - Combination of the two modalities provides visually controlled real-time navigation

J Neurosurg Pediatrics 2011
Combined intraoperative magnetic resonance imaging and navigated neuroendoscopy in children with multicompartmental hydrocephalus and complex cysts: a feasibility study
Dimitrios Paraskevopoulos, Naresh Biyani, Shlomi Constantini, and Liana Beni-Adani
MR Ventriculography

- 18 patients
- Injection of the lateral ventricle with contrast
- Pre and post-operatively
- Accurately defines anatomy, site of obstruction and efficacy of procedure (post-op)

Role of magnetic resonance ventriculography in multiloculated hydrocephalus
Gandhoke G, Frassanito P, Chandra N, Ojha B, Singh A
Ultrasound guided Neuroendoscopy

- 6 (10) patients
- Treated cystic lesions
 - Safe guidance of the scope
 - Permanent visual control of surrounding brain tissue
 - Real time imaging to check position of the tip during fenestration
 - Saline flush to confirm fenestration
- Recommended combination usage

A new method of ultrasonic guidance of neuroendoscopic procedures
MARTIN STROWITZKI, M.D., MICHAEL KIEFER, M.D., AND WOLF-INGO STEUDEL, M.D.
Inadequate fenestration
Multiloculated Hydrocephalus
Chiari Deformity

- Herniation of the hindbrain below the level of the Foramen Magnum

- Usually >5mm, associated with syringomyelia, hydrocephalus

- Cine MRI
 - CSF flow across CCJ
Chiari Deformity

- Surgical options
 - Bony decompression
 - Duroplasty
 - Tonsil coagulation
 - CCJ fusion

- Success is based on *restoring CSF flow* across CCJ

- Morbidity related to *dural opening*
Chiari I Deformity + Syrinx
"That it will ever come into general practice, I am extremely doubtful; because it’s beneficial application requires much time and gives a good bit of trouble to the patient and the practitioner"

J. Forbes, 1823
Preface to the First English edition of Laennec’s “Treatise”
Summary

- Ultrasound is safe, cost-effective, portable and non-invasive with diverse applications, especially in pediatric neurosurgery
 - Diagnostic
 - Navigation
 - Surgical adjunct
 - Therapeutic and neuromodulation
- Incredible diagnostic and therapeutic potential within the next few years, both as 2D and 3D
- Certainly worth making the effort to integrate this modality into our routine practice
Thank you!

LC.Padayachy@up.ac.za