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Outline

• Introduce the Challenge 

– Identify functional variants and target genes

--Grapple with genetic heterogeneity

• Use gene networks to systematically explore nervous system 
function and disease:

– Define a molecular pathology of a psychiatric disease in brain and 
understand how disease risk genes converge on specific biological 
processes (cells, circuits, pathways).

– Understand the fidelity of model systems and inform disease modeling.

• Use gene networks as a tool for drug screening



108 SCZ-associated genetic loci 

(Ripke et al., Nature, 2014)

In only 10 instances was the association signal 

attributable to a change within a known gene

Understand How Genes Act to Cause Disease: 

Schizophrenia

• Most GWAS SNPs lie in non-coding genomic regions whose 

function is not known, but thought to regulate other genes (e.g. 

enhancers). 

• Usually, SNPs or enhancers are just assigned to the closest gene, 

but there is little evidence to support this practice.



How do we infer target genes for GWAS/Regulatory Variants?

Genetic Variant
Gene

Nearest 
genes to the 
index SNPs

All genes 
within the LD 

block

Overlap with 
eQTL

Chromatin 
regulatory 

maps

Imprecise

Actual Functional Data

• Won et al. Nature
(538) 2016

• De La Torre Ubieta et 
al. Cell 2018

• Walker et al. Cell 2019 

• Cooper et al. BioRxiv
2021

• PsychENCODE…



ASD: Many forms of genetic variation and 
modes of inheritance

Genetic testing can currently identify 
approximately about 20%+ of mutations 

contributing to ASD:  
Clinical Microarray, Fragile X, Exome

sequencing.

• Many Genes
(1000+?)

• None account
for >1% of 
cases

• Highly additive
effects

• Strong
pleiotropy

De La Torre Ubieta et al. Nat Med 2016 



We now need to translate these data to the 
individual 

• The genetic data are at the population level.

• We still need to know what comprises disease risk in the 

individual.

– What if any mix of pathways is critical?

– Are their distinct subgroups of disease?

• Whole genome sequencing in large populations will likely be 

necessary.



Challenges to genetics paradigm in complex 
disorders

• There is extreme genetic heterogeneity at 
the population and individual levels. 

• Genes don’t act in isolation, they are 
components of biological signaling 
pathways, and in the brain, complex neural 
networks. 

• Integrative, systems biology approaches 
are necessary to identify these networks 
and translate genetic findings into 
biological mechanism (s).

• Will we have to develop a specific 
treatment for each disorder, or will there 
be convergence in specific biological 
pathways, developmental stages/processes 
or circuitry? 

Geschwind and Konopka Nature 2009



Weighted Gene Co-expression Network Analysis
(WGCNA; Zhang and Horvath 2005)

Network structure is robust and reproducible (it is real: Oldham et al. Nat Neurosci 2008; Miller et al. PNAS 

2010;Voineagu et al. Nature 2011; Parikshak et al. Cell 2013; Miller et al. Nature 2014; Hartl et al. Nat Neuro 2021).

A gene’s network position is biologically meaningful
We can identify groups of co-expressed genes called modules that correspond to key elements of biological 
function  (Oldham et al. 2008; Winden et al. Mol Sys Bio 2009; Voineagu et al. Nature 2011).

And within modules, we can identify the most central, “hub” genes (Horvath et al. 2006; Oldham et al. 2008, 
Winden et al. 2009; Wexler et al. Sci Signaling 2012; Chandran et al. Neuron 2016).

This structure serves as a basis for identification of biological meaningful insights
•Comparative network analysis – modules (Gandal et al. Science 2018a and 2018b; Walker Cell 2019)

•Comparative network analysis - gene connectivity (Hartl et al. Nat Neurosci. 2021)

•Guilt by association—functional annotation (Winden et al. 2009; Hartl et al. 2021)

GESCHWIND AND KONOPKA NATURE 2009



Despite extensive genetic heterogeneity there is a convergent pattern of 
pathology in post mortem brain from subjects who had ASD

• Two thirds of cases show up-
regulation of microglia and 
astrocyte genes.

• There is parallel down-regulation of 
neuronal genes involved in vesicle 
transport and synaptic signaling.

• A “major locus” form of ASD, 
(dup)15q11-13 shares this pattern.

• Causal genes affect the neuronal 
component predominantly. 

• Cortex Wide (Haney et al. BioRxiv
2020)

Irina Voineagu PhD

Voineagu et al. Nature 2011
(mRNA/microarray)

Parikshak et al. Nature 2016
(mRNA/RNAseq)

Grant Belgard,   Neel Parikshak,  Vivek Swarup, 

• Massively refined 
transcriptional networks in ASD 
and extend comparisons to 
other disorders (SCZ and BD)..

• Isoforms show larger disease 
and cell type specificity than 
gene level analysis!

• ASD, BD and SCZ impact distinct 
pathways and cell type 
vulnerability.

PsychENCODE – Phase 1

•

•

•

Gandal et al. 2018



Do ASD Risk Genes Converge on Any Developmental Time Point or 
Biological Process?

due to either single-nucleotide variants or struc-

tural variants (4), each of which is rare in the

population. As is the case with CNV (26, 36), in-

herited rare single-nucleotide variants also play a

role in ASD (37), although their contribution war-

rants further refinement.

Similar successevades genetic analysis of other

psychiatric disorders, for which we have very few

large-effect genes that have been independently

replicated. Work on SCZ is closest to identifying

mutations in specific genes. Initial studies identi-

fied increased rates of de novo mutations (38),

observing that the number of loss-of-function

events in cases isalmost three timeshigher than

in control family trios (8.7% compared to 2.9%)

(39). However, studies with larger sample sizes

(18, 19) failed to confirm an overall enrichment of

de novo mutations, and identification of individ-

ual susceptibility genes via WES has eluded re-

searchers. Enrichment of mutations was found,

but only when analysis was restricted to sets of

hypothesis-driven candidate genes (19).

On the other end of the spectrum, relatively

rare variants (SNPs with frequencies less than

5%) are predicted to account for 21%of the heri-

tability in Tourette syndrome but none of the

heritability of OCD (40). Still, for Tourette syn-

drome, only asinglevery raredominant mutation

has been identified in one family (41). For other

disorders, ranging from major depression to sub-

stance abuse and anxiety disorders, for which

there is strong evidence of heritable polygenic

risk, we lack significant evidence of rare large-

effect-size variant contributions, consistent with

differences in genetic architecture across psychi-

atric diseases, although study design and small

cohort sizes may also contribute.

Cross-disorder overlap: Genet ics as a

tool for nosology

SNP data can also be used to estimate the ge-

netic correlation (tagged by common variation)

SCI EN CE sciencemag.org 25 SEPTEM BER 2015 • VOL 349 I SSUE 6255 14 9 1
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Fig. 2. Pairwise genet ic correlat ions for four psychiat ric disorders. Plot ted on the vertical axis are

BPD, SCZ, MDD, and ASD (2). The horizontal colored lines mark the mean of the genetic correlation

based on SNP sharing for each pair of illnesses, and the dotted vertical colored lines are the SEs of the

estimates. Data are from Maier et al. (69).

ASD mutations are highly enriched

in speci c module(s) 

Genome organized into co-expressed modules

with molecular network analysis

A ected child

Genetic variant

or mutation
(Increasing risk) 

Explore gene/ module 

relat ionship to development, 

region and cell type 

Genetic analysis Hundreds of associated genetic variants across the genome 

Annotated 

molecular pathways: 

•  Transcriptional 

    regulation, 

•  Chromatin 

   modi cation,

•  Neurogenesis

Fig. 3. Heterogeneous genet ic risk factors converge in biological net -

works. Different study designs, such as trios, multiplex affected families, or

case-control (shown at far left) identify different forms of genetic risk in cases

(the arrow size indicates the relative effect size). By integrating these data with

biological network data, one can assess in a genome-wide manner whether

disease-associated risk variants are enriched in specific biological networks

(46). Here, for illustration, we depict rare de novo variants associated with ASD,

enriched in the yellow module.The function of this module of co-regulated genes

can be further annotated using gene ontology, which implicates these large-

effect ASD-associated variants in chromatin remodeling, transcriptional reg-

ulation, and neurogenesis. Networks can be subsequently mapped onto

development al t ime points, brain regions, circuits, or cells.
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Parikshak et al. Cell 2013; Parikshak et al. Nat Rev Genet 2015; Geschwind and Flint Science 2015



ASD risk genes map onto specific pathways and 
developmental networks

Parikshak et al. Cell 2013
Ruzzo et al. Cell 2019

Timing: 

ASD genes from multiple sources converge 
on prenatal neuro-developmental processes.

Regulation: 

Transcriptional and translational co-
regulation link ASD genes at multiple levels.

Cell types/circuits:

Multiple ASD risk gene modules are enriched 
in cortical glutamatergic projection neurons.

Specificity: 

These patterns highlight features that 
distinguish ASD from ID.



Jason Stein
Luis De La Torre Uibeta

We have good in vitro tools for modeling the effects of  
mutations in the proper cell context 

• Gene networks inform the validity of in vitro models

Geschwind and Dolmetsch Cell 2011

• How well do these human 
model systems recapitulate 
human neural development 
and function?

• We can use the in vivo gene 
networks that we have 
identified to determine this.



3-D cultures model prenatal and postnatal development

Risk Genes fall into distinct expression trajectories and biology pathways

• Transcription
• Methylation/Epigenetic Clock
• RNA editing
• Physiological Switches

2021

ASD SCZ

Browser: Gene Expression 
in Cortical Organoids

http://solo.bmap.ucla.edu/shiny/GECO/



CAN WE TARGET A NETWORK?



Matching transcriptional profiles from gene 
networks to find drugs

Broad Connectivity Map: 
7,000 expression profiles in cells after 
treatment with 1309 “FDA-approved” 

compounds*.

Gene expression
classifier

Identify Drugs that Reverse Pattern: 
Test the Drugs in Model Systems

Pattern Matching

Gene Expression in Disease Models or Patient 
Tissue: 

Measure expression profiles

(e.g. Chandran et al. Neuron 2016)

Lamb et al., 
Science 2006.

*now > 1M profiles in many cell types



Use Core Transcriptional Programs to Identify Drugs: 

• That promote regeneration in the CNS:

Neuron 89, 2016

• That inhibit neurodegeneration:

• That modify neuroinflammation:

Rexach et al. 

In each case, we have 
a clear phenotypic 
readout for validation



• We identify a transcriptional program observed after PNS, but not CNS 
injury in rodents (integrating dozens of data sets)

• This program links known signaling pathways via a core set of 
transcription factors (conserved at PPI level in humans)

• We experimentally and bio-informatically validate several network 
predictions (identify and validate putative drivers)

• We use the core transcriptional profile to identify a drug that promotes 
regeneration (combine pharmacology and genetic screens)

Neuron 89, 2016

VJ ChandranGiovanni Coppola 



Use neurodegeneration-associated modules to screen CMAP
(Hypothesis: reversal of these robustly associated patterns should ameliorate cell death)

NAS NAI

Lamb et al., Science 2006
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Scriptaid

• Identify drugs with opposing gene network 
changes  

• 4/6 HDAC inhibitors identified in top hits 
(permutation, p < 10-5)

• Do they inhibit cell death?

Swarup et al. Nat Med 2019



Opportunity:
Neurodegeneration involves sequential 
neuropathological stages involving multiple cell 
types

Problem:
Microglial molecular changes are confounded at the tissue-
level changes in cell-type abundance and marker gene 
regulation

Jessica Rexach MD PhD

Solution:  Integrating microglia specific time course data with bulk tissue to delineate microglial transitions phased 
with tissue-level pathological stages.

Rexach et al. BioRxiv 2019, Cell Reports 2020



Early microglia activity includes both immune activators and suppressors 
that we can distinguish and chemically reprogram

microglia-mediated synapse clearance

Transcriptomic Network Based Drug Screen

chemical reprogramming

Sa
ra

ca
ti

n
ib

Fa
to

st
at

in
Rexach et al. BioRxiv 2019, Cell Reports 2020



Reverse engineering of disease networks from large-scale 
gene perturbation data

Identify Drugs 
that induce 

network gene 
expression 

patterns

Rebuild the 
original network 
from validated 

drug-target gene 
maps

Map validated 
drugs back to 

network genes

Validate drug 
engagement of 

disease biology or 
biomarker

Functionally 
confirm genes as 

drug effectors



Conclusions

• We are on the threshold of identifying hundreds of causal 
genetic factors for most neuropsychiatric disorders. 

• The next challenge is to understand their function. 

• Network approaches provide an unbiased systems level 
framework for integrating genomic data.

• Integrative genomics and network analysis provides an 
“unbiased” genome-wide guide for mechanistic and therapeutic 
studies in model systems, biomarkers, and drug screening. 


