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Learning objectives

* To understand how MRI methods can map
organization of brain networks.

* To understand limits of available techniques.

* To review recent discoveries that map the

organization of brain networks important to higher-
level brain function.
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Measuring Brain Networks in the Human
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Example Validation

Cerebro-Cerebellar Circuit

Krienen and Buckner, 2009, Cerebral Cortex



Example Validation

Cerebro-Cerebellar Circuit

Lu, Liu et al., 2011, J. Neurosci.
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Human Association Cortex is Dramatically Expanded

Korbinian Brodmann



Canonical Hierarchical Sensory-Motor Network

Human




Canonical Hierarchical Sensory-Motor Network

V3A

Yeo, Krienen et al., 2011, J. Neurophysiol.



Canonical Hierarchical Sensory-Motor Network

FEF \

Maunsell and Van Essen, 1983, J. Neurosci. /

Yeo, Krienen et al., 2011, J. Neurophysiol.



Canonical Hierarchical Sensory-Motor Network

V3A

Yeo, Krienen et al., 2011, J. Neurophysiol.



Distributed Association Networks

Yeo, Krienen et al., 2011, J. Neurophysiol.



Distributed Association Networks

Yeo, Krienen et al., 2011, J. Neurophysiol.



Distributed Association Networks
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Distributed Association Networks

Coupled to Hippocampal
Memory System

Vincent et al., 2007, J. Neurophysiol. Yeo, Krienen et al., 2011, J. Neurophysiol.
Kahn et al., 2008, J. Neurophysiol.



Distributed Association Networks

External Attention

Coupled to Hippocampal Internal Mentation
Memory System
Vincent et al., 2007, J. Neurophysiol. Yeo, Krienen et al., 2011, J. Neurophysiol.

Kahn et al., 2008, J. Neurophysiol. (Andreasen et al., 1995, Am. J. Psychiatry)



Distributed Association Networks

Remembering External Attention

95 Independent Studies Internal Mentation

Yeo, Krienen et al., 2011, J. Neurophysiol.

Andrews-Hanna, Saxe, & Yarkoni, 2014, Neurolmage (Andreasen et al., 1995, Am. J. Psychiatry)



Distributed Association Networks

External Attention

Internal Mentation
Time (seconds)

Yeo, Krienen et al., 2011, J. Neurophysiol.

Fox et al., 2005, Proc. Natl. Acad. Sci.



Distributed Association Networks

Control Network?

Yeo, Krienen et al., 2011, J. Neurophysiol.



Distributed Association Networks

Control Network

Control Network?

Vincent et al., 2006, J. Neurophysiol.



Expansion in Human Evolution

Control Network

Hill et al., 2010 Proc Natl Acad Sci Vincent et al., 2006, J. Neurophysiol.



Relevance to Mental lliness

Baker et al., 2013, JAMA Psychiatry Vincent et al., 2006, J. Neurophysiol.

(See also Whitfield-Gabrieli et al., 2009, PNAS; Anticivic et al., 2013 Cereb Ctx; Yang et al., 2016 PNAS)






Variability Across Individuals

Day 1 Day 2 Day 3 Day 4 Day 5

Mueller...Liu, 2013 Neuron; Wang...Liu, 2015, Nat Neurosci;



Group Association Network (n=1000)

Yeo, Krienen et al., 2011, J. Neurophysiol.



Group Association Network (n=1000)

Braga and Buckner, 2017, Neuron



Single Subject (24 MRI Sessions)

Braga and Buckner, 2017, Neuron



Single Subject (24 MRI Sessions)

Braga and Buckner, 2017, Neuron



Single Subject (24 MRI Sessions)

Braga and Buckner, 2017, Neuron



Single Subject (24 MRI Sessions)

Braga and Buckner, 2017, Neuron



Single Subject (24 MRI Sessions)

Braga and Buckner, 2017, Neuron



Single Subject (24 MRI Sessions)

B Network A
[] Network B

Braga and Buckner, 2017, Neuron



Human Specialization for Higher Brain Function?

B Network A
[] Network B

Braga and Buckner, 2017, Neuron



Human Specialization for Higher Brain Function?

Geschwind’s Language Network
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Courtesy of Rodrigo Braga



Human Specialization for Higher Brain Function?

Remembering
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Theory of Mind

Language

Courtesy of Rodrigo Braga






Developmental Specialization

Mature
Proto-Organization mp Specialization

Early Development

Courtesy of Rodrigo Braga



Developmental Specialization

Mature
Proto-Organization mp Specialization

Late Development

Courtesy of Rodrigo Braga



Human Neuromodulation
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Resting-state networks link invasive and noninvasive
brain stimulation across diverse psychiatric and

neurological diseases

Michael D. Fox™®“’, Randy L. Buckner“®*, Hesheng Liu‘, M. Mallar Chakravarty"®, Andres M. Lozano™,

and Alvaro Pascual-Leone”

‘Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Iszael Deaconess Medical Center, Marvard Medical School, Boston,
MA 02215; "Department of Neurclogy, Massachusetts General Hosgital, Harvard Medical School, Boston, MA 02114, “Athinouls A. Martinos Center for

Biomedical Imaging, Marvard Medical 4
“Department of Psychology, Center for
Verdun, QC, Canada H4H 1R3; "Departs|
Neurosurgery, Department of Surgery,
Toronto, ON, Canada MST 258
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Target for invasive
stimulation (DBS)

Diseases with evidence of efficacy for both invasive and noninvasive brain stimulation
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stimulation (TMS, tDCS)

unclear, and the ideal stimulation sil

limiting optimization of
tion in further disorders. In this arti
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tional connectivity may be useful f|
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network modulation.
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promising treatment apprc

neurological diseases is foc;
ally divided into invasive approach
noninvasive approaches that stimy
skull. The dominant invasive trea
(DBS) in which an electrode is sy
brain and used to deliver electr]
(generally 120-160 Hz) (1, 2). In
cffects of DBS resemble those of st
but in other cases DBS appearsto

Pain

Alzheimer’s disease

Essential tremor
Gait dysfunction
Huntington’s disease
Minimally conscious
Obsessive compulsive disorder

Parkinson's disease
Tourette's syndrome

NA
Fornix
NA, subgenual
Subgenual, VC/VS, NA, MFB, habenula
GPi
Thalamus (AN, CM), MTL
VIM
PPN
GPi
Thalamus (intralaminar/CL, CM/Pf)
VCNS, NA, ALIC, STN
PAG, thalamus (VPL/VPM)
STN, GPi

DLPFC (laterality unclear)
Bilateral DLPFC (+ parietal, temporal)
Left DLPFC
Left DLPFC, right DLPFC
SMA/ACC, premotor
Active EEG focus, cerebellum
Midline cerebellum, lateral cerebellum, M1
M1 (leg area)

SMA
Right DLPFC, M1
Left orbitofrontal, pre-SMA
M1
M1, SMA
SMA

adjacent white matter fibers (1, 2). DBS systems are approved by
the US Food and Drug Administration (FDA) for treatment of
essential tremor and Parkinson’s disease, have humanitarian de-
vice exemptions for dystonia and obsessive compulsive disorder,
and are being explored as a therapy for many other discases in-
cluding depression, Alzheimer's disease, and even minimally
conscious states (1, 3-6).

Although DBS can result in dramatic therapeutic benefit, the
risk inherent in neurcsurgery has motivated research into non-
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Artificial Intelligence

Neuron

[

Neuroscience-Inspired Artificial Intelligence
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The fields of neuroscience and artificial intelligence (Al) have a long and intertwined history. In more recent
times, however, communication and collab: i 1 the two fields has become less commonplace.
In this article, we argue that better understanding biological brains could play a vital role in building intelligent
machines. We survey historical interactions between the Al and neuroscience fields and emphasize current
advances in Al that have been inspired by the study of neural computation in humans and other animals. We
conclude by highlighting shared themes that may be key for advancing future research in both fields.

In recent years, rapid progress has been made in the related
fields of neuroscience and artificial intelligence (Al). At the

tively. For example, if an algorithm is not quite attaining the level
of quired or but b itis core to
the of the brain, then we can surmise that redoubled

dawn of the computer age, work on Al was i inter-
twined with neuroscience and psychology, and many of the early
pioneers straddled both fields, with collaborations between
these disciplines proving highly productive (Churchland and
Sejnowski, 1988; Hebb, 1949; Hinton et al., 1986; Hopfield,
1982; McCulloch and Pitts, 1943; Turing, 1950). However,
more recently, the interaction has become much less common-
place, as both j have grown in

and disciplinary boundaries have solidified. In this review, we
argue for the critical and ongoing importance of neuroscience

engineering efforts geared to making it work in artificial systems
are likely to pay off.

Of course from a practical standpoint of building an Al
system, we need not enforce to biologi
plausibility. From an engineering perspective, what works is
ultimately all that matters. For our purposes then, biological
plausibility is a guide, not a strict requirement. What we are
i inisa i level ing
of the brain, namely the algorithms, architectures, functions,

in generating ideas that will accelerate and guide Al
(see Hassabis commentary in Brooks et al., 2012).

We begin with the premise that building human-level general
Al (or “Turing-powerful” intelligent systems; Turing, 1936) is a
daunting task, because the search space of possible solutions
is vast and likely only very sparsely populated. We argue that
this the utility of inizing the inner
workings of the human brain— the only existing proof that
such an intelli is even i ing animal it
and its neural implementation also has a vital role to play, as it
can provide a window into various important aspects of higher-
level general intelligence.

The benefits to Al of closely ini iologi
intelligence are two-fold. First, neuroscience provides a rich
source of inspiration for new types of algorithms and architec-

and it utilizes. This roughly corresponds to
the top two levels of the three levels of analysis that Marr

stated are requi to any bio-
logical system (Marr and Poggio, 1976): the goals of the sys-
tem (the computational level) and the process and computa-
tions that realize this goal (the algorithmic level). The precise
mechanisms by which this is physically realized in a biological
substrate are less relevant here (the implementation level).
Note this is where our app to i inspired Al
differs from other initiatives, such as the Blue Brain Project
(Markram, 2006) or the field of neuromorphic computing sys-
tems (Esser et al,, 2016), which attempt to closely mimic or
directly reverse engineer the specifics of neural circuits (albeit
with different goals in mind). By focusing on the computational
and algorithmic levels, we gain transferrable insights into gen-

tures, of and y to the
and logic-based methods and ideas that have largely

eral of brain function, while leaving room to
incti ities and

to Al. For were a new facet of
biological computation found to be critical to supporting a cogni-
tive function, then we would itan
for i into artificial Second,

the PP
that arise when building intelligent machines in silico.
The following sections unpack these points by considering the
past, present, and future of the Al-neuroscience interface.

can provide validation of Al techniques that already exist. If a
known algorithm is subsequently found to be implemented in
the brain, then that is strong support for its plausibility as an in-
tegral component of an overall general intelligence system.
Such clues can be critical to a long-term research program
when determining where to allocate resources most produc-

® CrossMark

Before we offer ification. Th: this article,
we employ the termms “neuroscience” and “Al” We use these
terms in the widest possible sense. When we say neuroscience,
we mean to include all fields that are involved with the study of
the brain, the that it and the i

by which it does so, including cog
neuroscience and psychology. When we say Al, we mean work

Neuron 95, July 19, 2017 © 2017 Published by Elsevier Inc. 245




Conclusions

1) Human brain imaging methods are able to detect
network organization in individual people.

2) Distinct networks that are distributed across the brain
are specialized for language, social, and mnemonic
functions.

3) The identification of the networks provide targets for
neuromodulation but have not yet provided translatable
clinical tests or interventions.

MASSACHUSETTS
GENERAL HOSPITAL
PSYCHIATRY ACADEMY www.mghcme.org




