

Precision Medicine 2021

COLUMBIA UNIVERSITY
Vagelos College of Physicians and Surgeons

IGM Institute for
Genomic Medicine

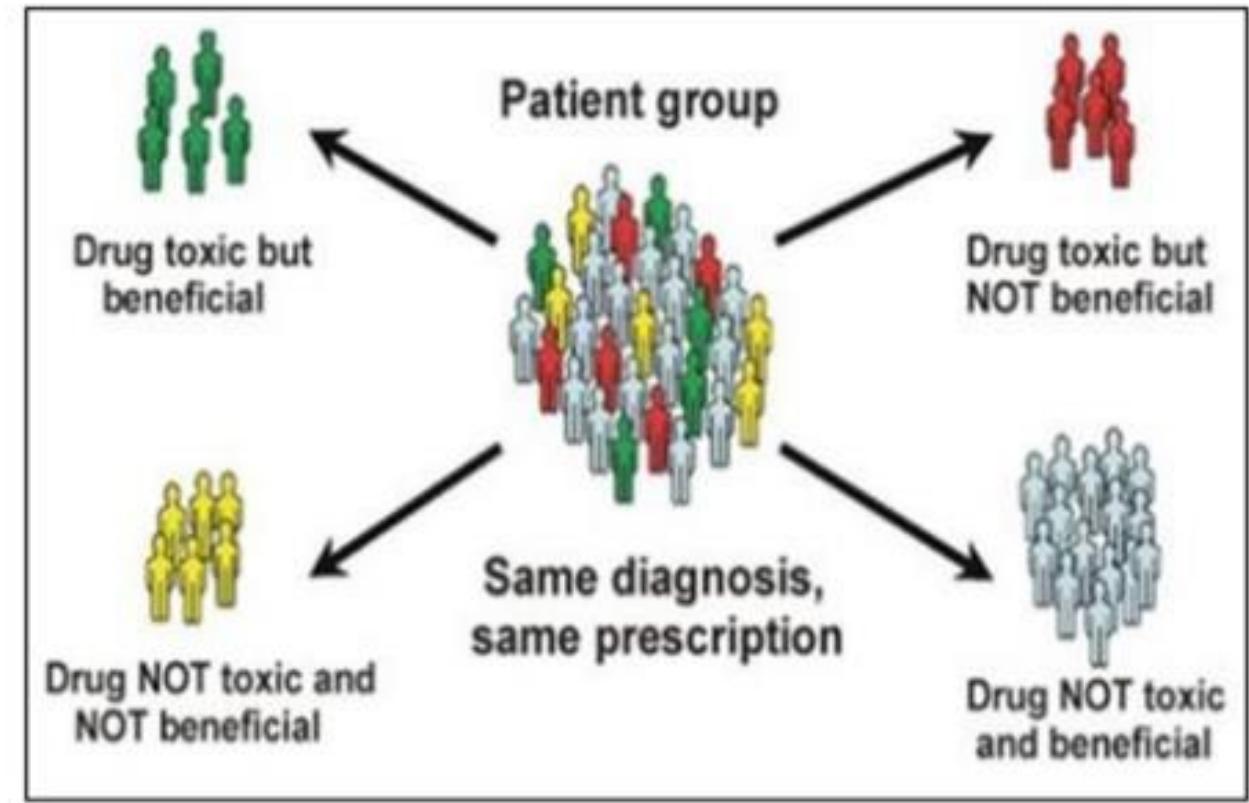
David B. Goldstein, PhD

John E. Borne Professor of Medical and Surgical Research
in Genetics and Development and Neurology
and Medicine

Director, Institute for Genomic Medicine
Columbia University Irving Medical Center

Disclosure Statement of Financial Interest

Founder of precision medicine companies Praxis Precision Medicines and Actio Biosciences .

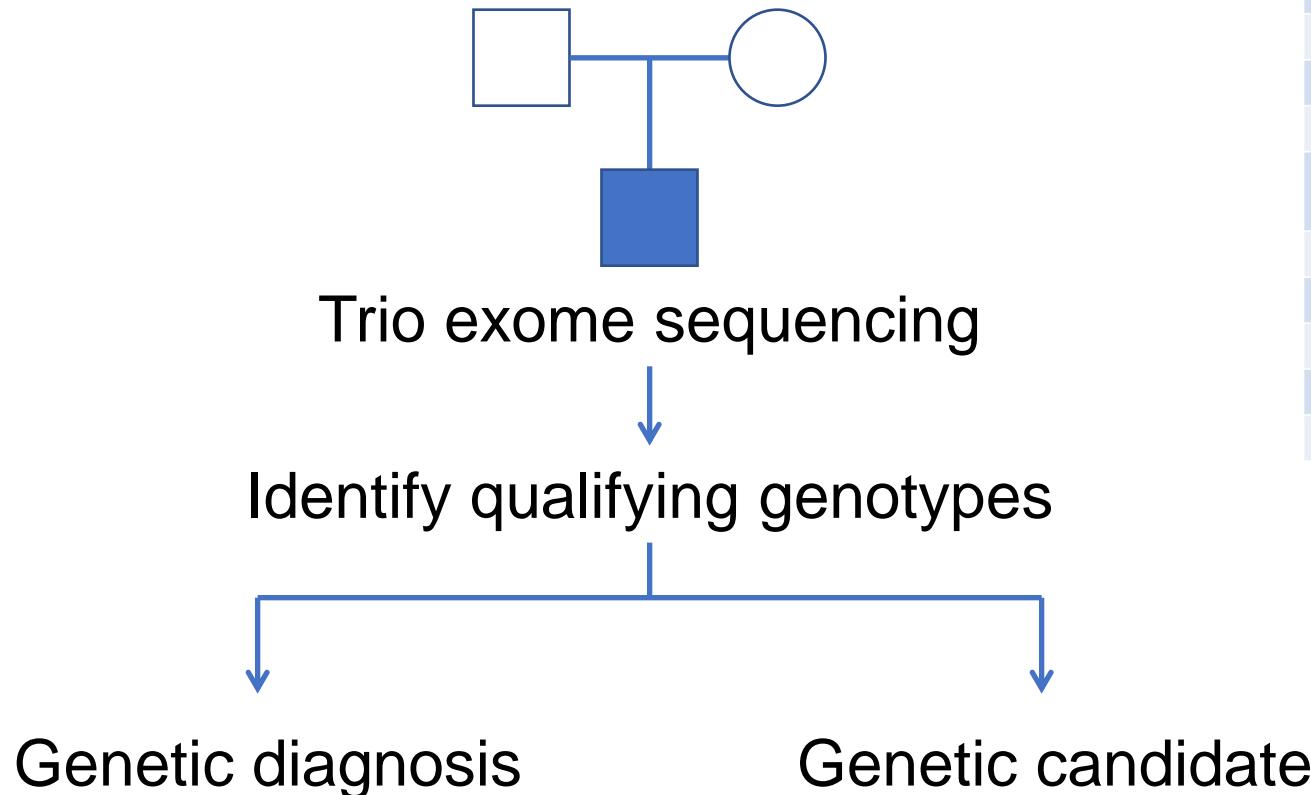


COLUMBIA UNIVERSITY
Vagelos College of Physicians and Surgeons

IGM Institute for
Genomic Medicine

Genetically Stratified Medicine

- Goal is to identify subgroups of patients with similar disease mechanisms and specific responses to medications and treatments
- WES is an important tool in the advancement of genetically stratified medicine
- Relies on widespread sequencing of cohorts of interest and a centralized system for enrollment, sequencing and storage of data

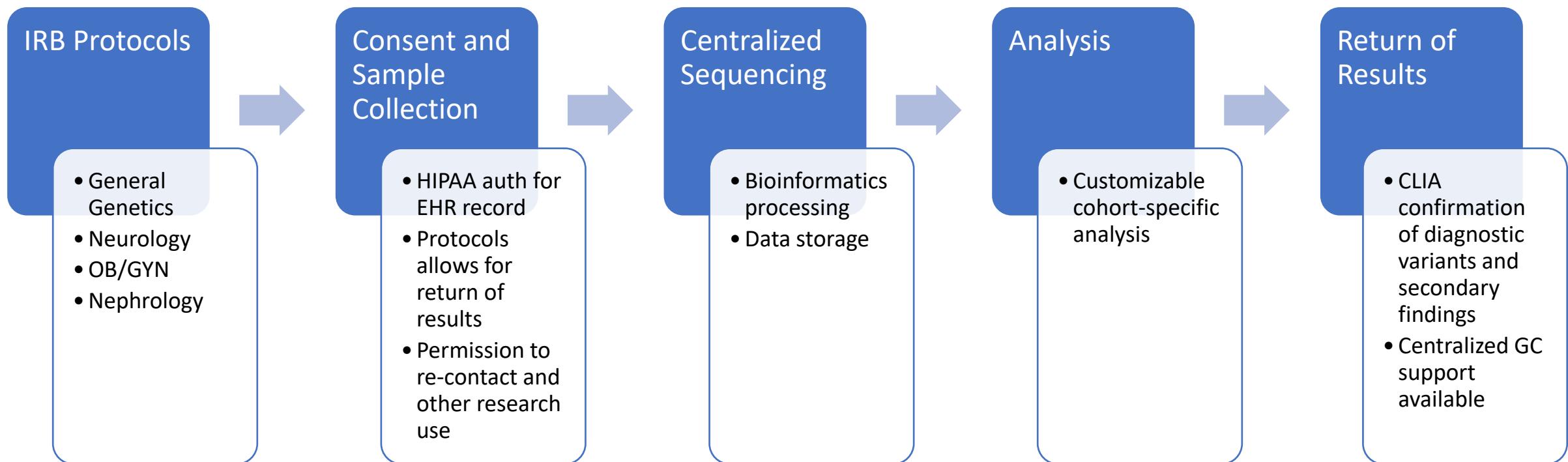

Source: https://www.who.int/medicines/areas/priority_medicines/Ch7_4Stratified.pdf?ua=1

COLUMBIA UNIVERSITY
Vagelos College of Physicians and Surgeons

IGM Institute for
Genomic Medicine

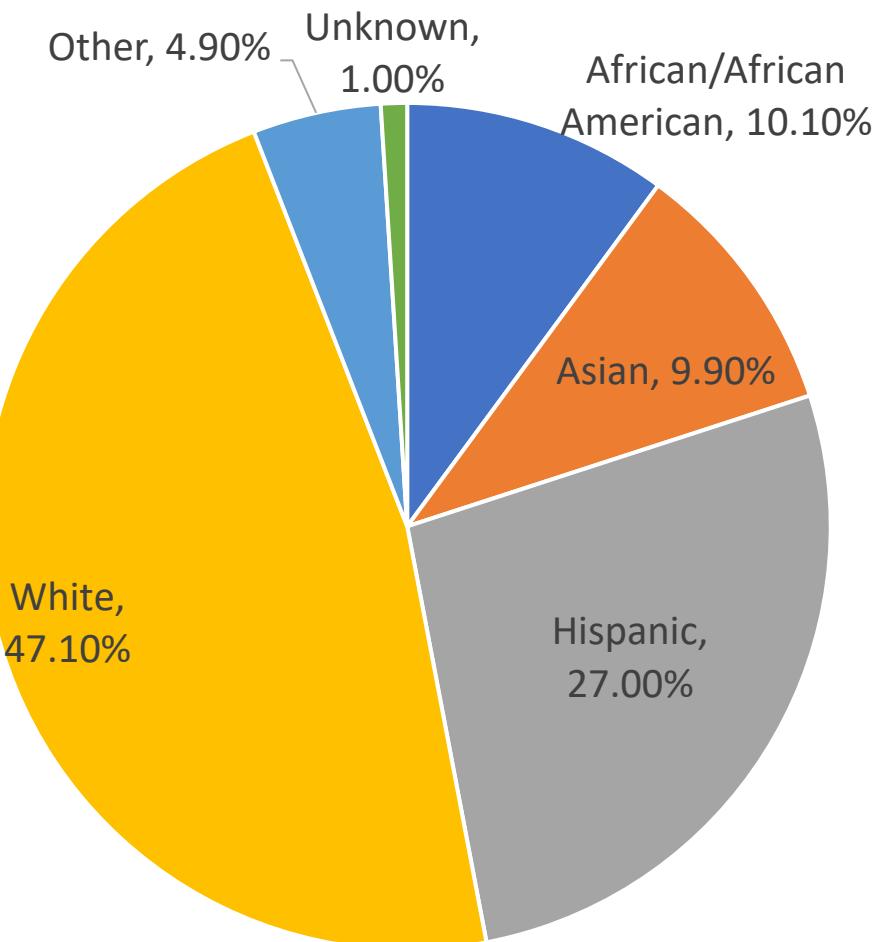
Sequencing for Rare Diseases

Study	Journal	N	Ascertainment	% resolved
Need 2012	J Med Genet	12	Mixture	50%
Yang 2013	NEJM	250	80% Neuro	25%
Calvo 2012	Sci Transl Med	42	Mitochondrial	24%
DeLigt 2013	NEJM	100	Severe ID	16%
Zhu 2014	Genetics in Medicine	119	Mixture	24%
Srivastava 2014	Annals of Neuro	78	Neuro	41%
Yang 2014	JAMA	2,000	Mixture	25%
Lee 2014	JAMA	814	Mixture	26%
Soden 2014	Sci Transl Med	119	Neuro	45%
Combined	-	3,534	Mixture	26%


Ten Thousand patients sequenced to date at tertiary care center

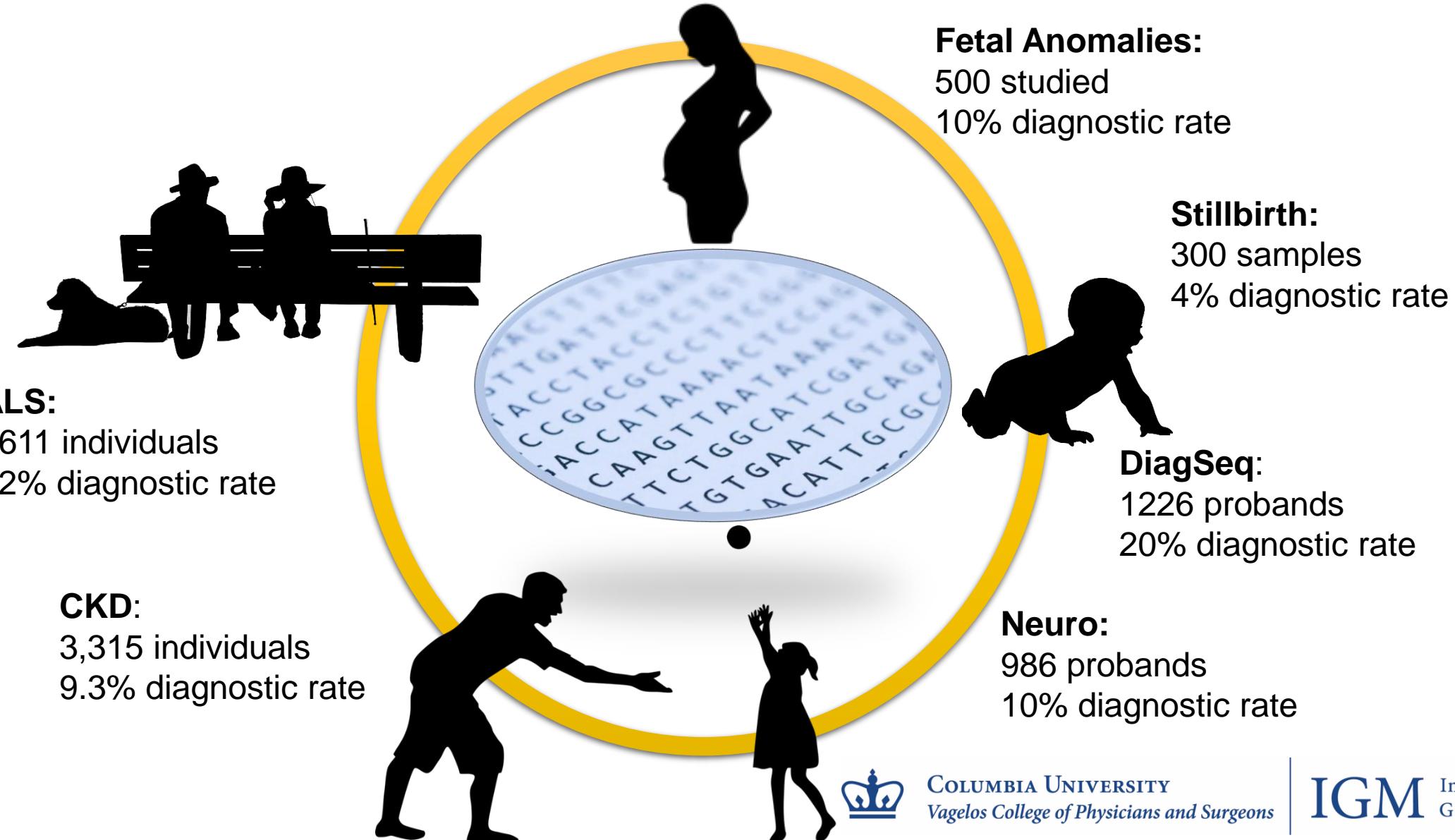
COLUMBIA UNIVERSITY
Vagelos College of Physicians and Surgeons

IGM Institute for
Genomic Medicine


General Workflow

Diversity

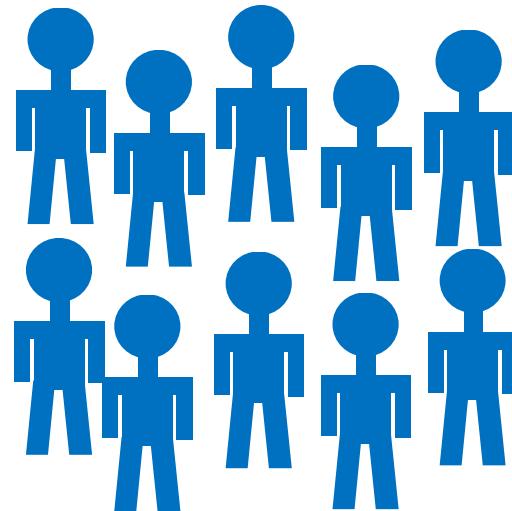
- Protocols were developed to be as accessible as possible
 - Remote enrollments
 - Spanish translations
 - CUIMC's short form consent process
 - No cost to participant
- ~ 50% of study subjects identified from a group underrepresented in biomedical research


Race/Ethnicity of Cohort

COLUMBIA UNIVERSITY
Vagelos College of Physicians and Surgeons

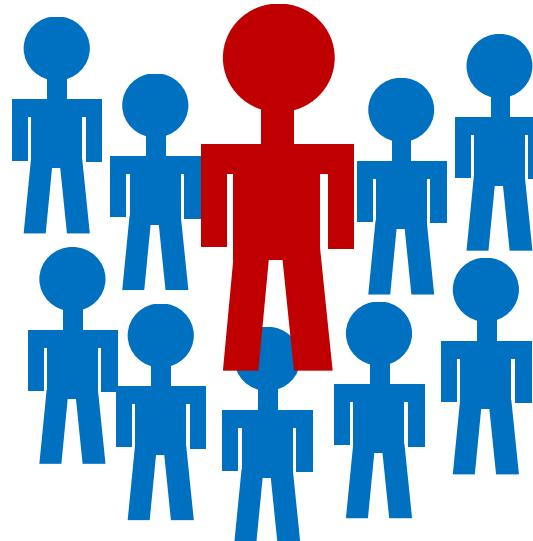
IGM Institute for
Genomic Medicine

Utility of Genomics Throughout the Lifespan

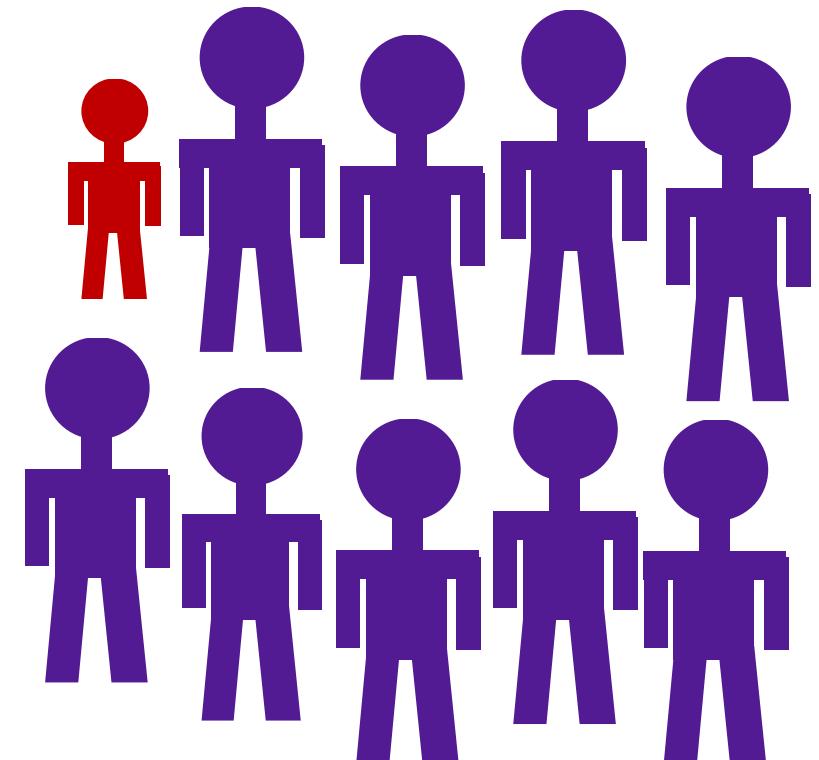


COLUMBIA UNIVERSITY
Vagelos College of Physicians and Surgeons

IGM Institute for
Genomic Medicine


Diagnostic Utility of Exome Sequencing For Kidney Disease

ES of 3,315 individuals with all-cause CKD


91.6% adults
35.6% non-white
European ethnicity

~1 in 10 (9.3%) have diagnostic findings

66 different single-gene etiologies
59% unique cases

In 89% of cases genetic findings inform clinical care

Spectrum of Schizophrenia Severity by Treatment Setting and Length of Stay

Community/Outpatient

Community Inpatient (10 days)

Schizophrenia Severity

State Inpatient (< 5 years)

State Inpatient (> 5 years)

COLUMBIA UNIVERSITY
Vagelos College of Physicians and Surgeons

IGM Institute for
Genomic Medicine

Burden of Rare Variants in Intolerant Genes Across Neuropsychiatric Disorders

Disease	Missense Variants	Loss-of-Function Variants
SETRS	OR 2.62*	OR 1.95**
Typical SCZ	OR 1.06	OR 1.26
Autism	OR 1.2	OR 1.8
Epilepsy	OR 1.1	OR 1.3

* $p = 1.64 \times 10^{-5}$

** $p = 3 \times 10^{-4}$

50% of SETRS patients vs. 26% of controls have a rare qualifying missense or LoF variant in the intolerant gene sets (**OR 2.9, 95% CI 1.86-4.52, $P = 1.2 \times 10^{-6}$**)

COLUMBIA UNIVERSITY
Vagelos College of Physicians and Surgeons

IGM Institute for
Genomic Medicine

Most Common Genetic Diagnoses

Diagnosis Gene	Proband Count	Cohort
<i>COL4A5</i>	35	CKD
<i>COL4A3</i>	17	CKD
<i>COL4A4</i>	14	CKD
<i>SCN1A</i>	12	Epilepsy, ID/DD/ASD
<i>NF1</i>	10	CKD, Epilepsy, ID/DD/ASD
<i>PKD1</i>	10	CKD
<i>SCN2A</i>	10	Fetal Anomaly, Epilepsy, ID/DD/ASD
<i>NF1</i>	9	Epilepsy, ID/DD/ASD
<i>TRPC6</i>	8	CKD
<i>NSD1</i>	7	Epilepsy, ID/DD/ASD
<i>UMOD</i>	7	CKD
<i>CACNA1A</i>	6	Epilepsy, ID/DD/ASD, Ataxia
<i>EYA1</i>	6	CKD, Fetal
<i>HNF1A</i>	6	CKD
<i>NPHS2</i>	6	CKD
		Fetal Anomaly, Epilepsy, Congenital
<i>COL4A1</i>	5	Anomaly
<i>PAX2</i>	5	CKD
<i>PTPN11</i>	5	CKD, ID/DD/ASD

- Identified a primary result in 568/4890 probands that fully or partially explains phenotype
- Genetic diagnoses were identified across multiple cohorts

Brown-Vialetto-Van Laere Syndrome

3 weeks pre-treatment

2 days of treatment

3 weeks of treatment

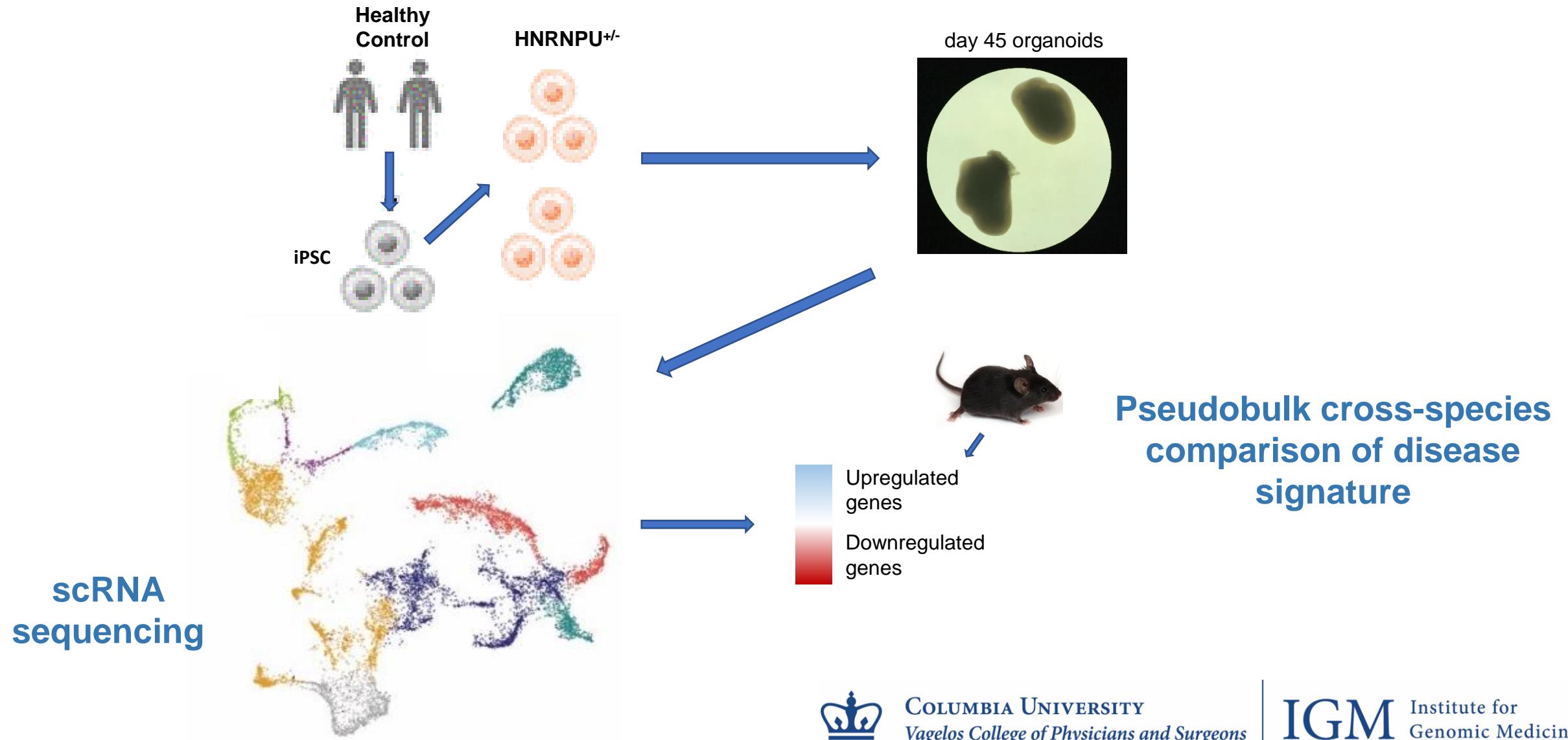
4 weeks of treatment

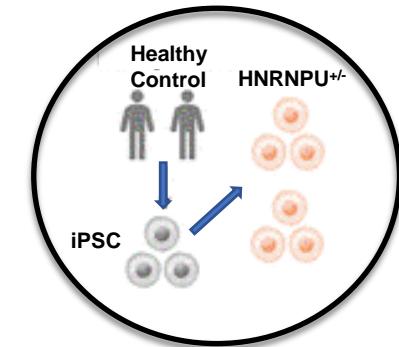
Cara Greene

COLUMBIA UNIVERSITY
Vagelos College of Physicians and Surgeons

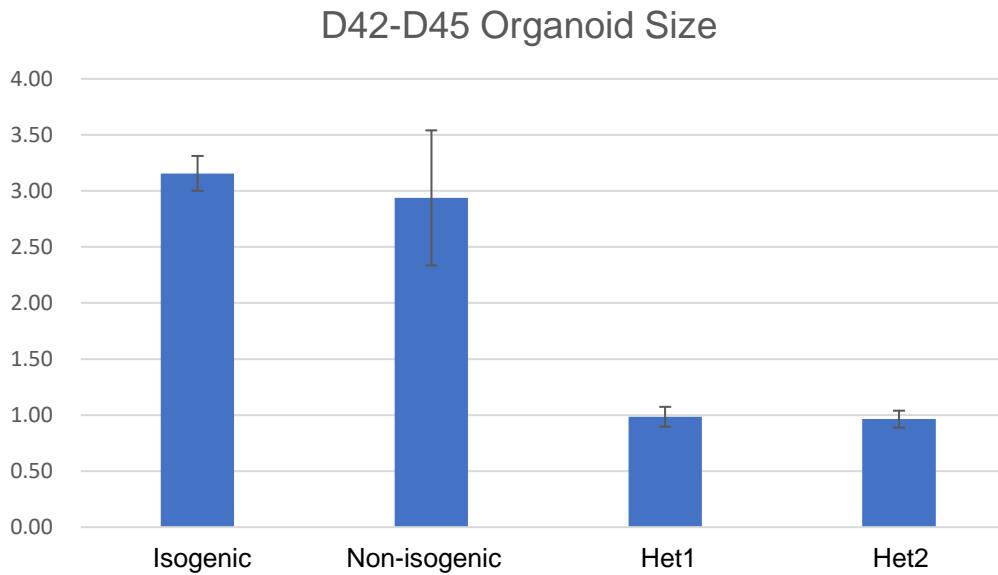
IGM Institute for
Genomic Medicine

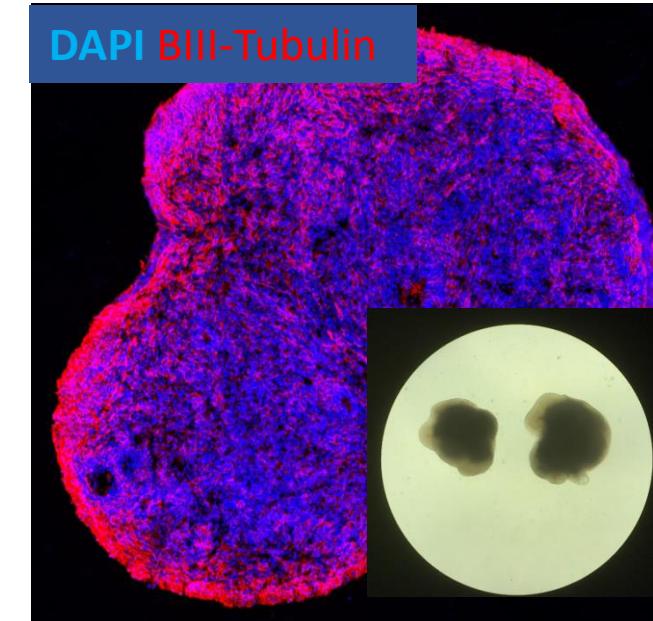
Transcriptomic Restoration

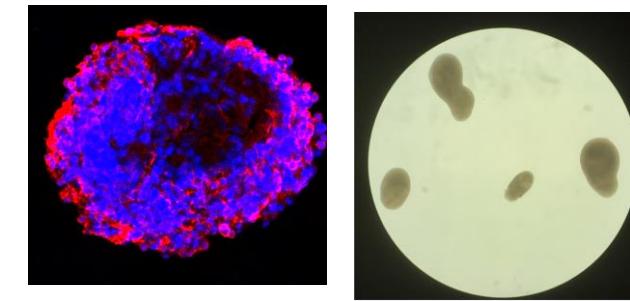

Developmental delay	<i>ACTL6B</i>	<i>CHD2</i>	<i>FOGX1</i>	<i>KAT6A</i>	<i>NACC1</i>	<i>POLR3A</i>	<i>SIM1</i>	<i>TBX1</i>
	<i>ADNP</i>	<i>CHD4</i>	<i>FOXP1</i>	<i>KAT6B</i>	<i>NFIX</i>	<i>POLR3B</i>	<i>SIX3</i>	<i>TCF20</i>
Autism spectrum disorder	<i>AFF2</i>	<i>CHD7</i>	<i>FOXP3</i>	<i>KDM5C</i>	<i>NKX2-1</i>	<i>POU3F3</i>	<i>SKI</i>	<i>TCF4</i>
	<i>AFF4</i>	<i>CREBBP</i>	<i>GATA2D2B</i>	<i>KDM6A</i>	<i>NR2F1</i>	<i>PQBP1</i>	<i>SMARCA2</i>	<i>TGIF1</i>
Epileptic encephalopathy	<i>ARID1A</i>	<i>CTCF</i>	<i>GLI2</i>	<i>KMT2A</i>	<i>NSD1</i>	<i>PRMT7</i>	<i>SMARCA4</i>	<i>THOC6</i>
	<i>ARID1B</i>	<i>CTDP1</i>	<i>GLI3</i>	<i>KMT2D</i>	<i>OTX2</i>	<i>PTF1A</i>	<i>SMARCB1</i>	<i>THRA</i>
Schizophrenia	<i>ARX</i>	<i>DDX3X</i>	<i>GTF2H5</i>	<i>KMT2E</i>	<i>PAX6</i>	<i>PURA</i>	<i>SNRPB</i>	<i>TWIST1</i>
	<i>ASXL1</i>	<i>DEAF1</i>	<i>HCFC1</i>	<i>KMT5B</i>	<i>PAX8</i>	<i>RAI1</i>	<i>SON</i>	<i>UPF3B</i>
BAZ2B	<i>ATRX</i>	<i>DNNMT3A</i>	<i>HDAC4</i>	<i>LARP7</i>	<i>PCGF2</i>	<i>RARB</i>	<i>SOX2</i>	<i>WAC</i>
	<i>AUTS2</i>	<i>DNNMT3B</i>	<i>HDAC8</i>	<i>MAF</i>	<i>PHF6</i>	<i>RAX</i>	<i>SOX3</i>	<i>YY1</i>
BCL11A	<i>BCL11A</i>	<i>EBF3</i>	<i>HNRNPK</i>	<i>MECP2</i>	<i>PHF8</i>	<i>RERE</i>	<i>SRCAP</i>	<i>ZBTB20</i>
	<i>BRPF1</i>	<i>EHMT1</i>	<i>HNRNPR</i>	<i>MED12</i>	<i>PHOX2B</i>	<i>SATB2</i>	<i>SUZ12</i>	<i>ZEB2</i>
CC2D1A	<i>BRWD3</i>	<i>EP300</i>	<i>HNRNPU</i>	<i>MEF2C</i>	<i>POGZ</i>	<i>SETBP1</i>	<i>TAF1</i>	<i>ZIC2</i>
	<i>CDK8</i>	<i>EZH2</i>	<i>HOXA1</i>	<i>MSL3</i>	<i>POLR2A</i>	<i>SETD5</i>	<i>TBL1XR1</i>	<i>ZNF711</i>
Epileptic encephalopathy	<i>ADNP</i>	<i>CHD1</i>	<i>DDX3X</i>	<i>HNRNPU</i>	<i>MBD5</i>	<i>NR2F1</i>	<i>SATB2</i>	<i>TBR1</i>
	<i>AFF2</i>	<i>CHD2</i>	<i>DEAF1</i>	<i>KANSL1</i>	<i>MECP2</i>	<i>NR3C2</i>	<i>SETBP1</i>	<i>TCF20</i>
Schizophrenia	<i>ARID1B</i>	<i>CHD3</i>	<i>DNNMT3A</i>	<i>KAT6A</i>	<i>MED12L</i>	<i>NR4A2</i>	<i>SETD1B</i>	<i>TCF4</i>
	<i>ARID2</i>	<i>CHD7</i>	<i>EBF3</i>	<i>KDM3B</i>	<i>MED13</i>	<i>NSD1</i>	<i>SETD2</i>	<i>TRRAP</i>
BAZ2B	<i>ARX</i>	<i>CHD8</i>	<i>EHMT1</i>	<i>KDM6B</i>	<i>MED13L</i>	<i>PHF21A</i>	<i>SETD5</i>	<i>TSHZ3</i>
	<i>ASH1L</i>	<i>CIC</i>	<i>EP300</i>	<i>KMT2A</i>	<i>MEF2C</i>	<i>POGZ</i>	<i>SIN3A</i>	<i>UPF3B</i>
BCL11A	<i>ASXL3</i>	<i>CNOT3</i>	<i>FMR1</i>	<i>KMT2C</i>	<i>MEIS2</i>	<i>RAI1</i>	<i>SMARCC2</i>	<i>WAC</i>
	<i>ATRX</i>	<i>CREBBP</i>	<i>FOGX1</i>	<i>KMT2E</i>	<i>MYT1L</i>	<i>RERE</i>	<i>SON</i>	<i>ZBTB20</i>
Epileptic encephalopathy	<i>AUTS2</i>	<i>CSDE1</i>	<i>FOXP1</i>	<i>KMT5B</i>	<i>NACC1</i>	<i>RFX3</i>	<i>SOX5</i>	<i>ZNF292</i>
	<i>BAZ2B</i>	<i>CTCF</i>	<i>HDAC4</i>	<i>LZTR1</i>	<i>NFIB</i>	<i>RORB</i>	<i>SRCAP</i>	<i>ZNF462</i>
Schizophrenia	<i>BCL11A</i>	<i>CUX2</i>	<i>HNRNPH2</i>					
Epileptic encephalopathy	<i>ARID1B</i>	<i>ASXL3</i>	<i>FOGX1</i>	<i>MBD5</i>	<i>MEF2C</i>	<i>ZEB2</i>		
	<i>ARX</i>	<i>CHD2</i>	<i>HNRNPU</i>	<i>MECP2</i>	<i>PURA</i>			
Schizophrenia								
Schizophrenia				<i>SETD1A</i>	<i>SP4</i>			


COLUMBIA UNIVERSITY
Vagelos College of Physicians and Surgeons

IGM Institute for
Genomic Medicine


Modelling Human HNRNPU Dysregulation in Cortical Organoids


Impaired Growth in HNRNPU Cortical Organoids


Wild-type and Mutant organoids generate significant neuronal populations in ~1.5 months

Isogenic Control (PGP1) – Day 42

HNRNPU^{+/} Clone 1 (D11) – Day 42

COLUMBIA UNIVERSITY
Vagelos College of Physicians and Surgeons

IGM Institute for
Genomic Medicine

Building a Precision Medicine Ecosystem Needs a Community

COLUMBIA UNIVERSITY
Vagelos College of Physicians and Surgeons

IGM Institute for
Genomic Medicine