

TAPPING INTO COGNITION: CONNECTING BRAIN IMAGING AND DIGITAL BIOMARKERS FOR PRECISION PSYCHIATRY

Olusola Ajilore, MD, PhD

Center for Depression and Resilience Professor of Psychiatry

University of Illinois Chicago

DISCLOSURES

I have the following relevant financial relationship with a commercial interest to disclose:

- KeyWise AI (cofounder)
- Embodied Labs (advisory board)
- Blueprint Health (advisory board)
- Otsuka (consultant)

AMERICAN

JOURNAL OF INSANITY.

APRIL, 1891.

THE MECHANISM OF INSANITY.*

BY EDWARD COWLES, M. D., Superintendent of the McLean Asylum, Somerville, Mass.

The "empirical valuation" of morbid manifestations of these mental phenomena [retention, reproduction, and association of ideas], that is commonly made by the alienist, has the greater value when, by careful study and comparison with the action of the normal mechanisms...by a like "tireless observation". Then knowing what to look for, as he who is expert with the microscope, he may report what he sees...with more completeness and precision"

THE LANCET.

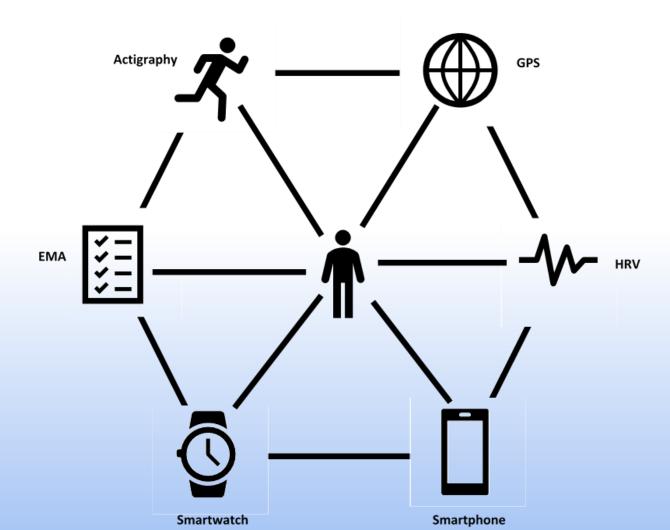
LONDON: SATURDAY, MAY 14, 1859.

When a lunatic is received into an asylum, he is removed by an interval of time, and of locality, from the origin of his disease; he is completely isolated from the sphere, and separated from all the surrounding conditions, in which he passed his life. The necessary clues to trace back the causes of his malady are broken by the reserve of friends, the want of knowledge of others, and by numerous difficulties which, in most cases, reduce the formal statement entered in the asylum case-book to a mere hypothesis, void of precision and of authority.

TOOLS OF "TIRELESS OBSERVATION" IN OUR

"SURROUNDING CONDITIONS"

ECOLOGICAL MOMENTARY ASSESSMENT (EMA)/UBIQUITOUS SENSING

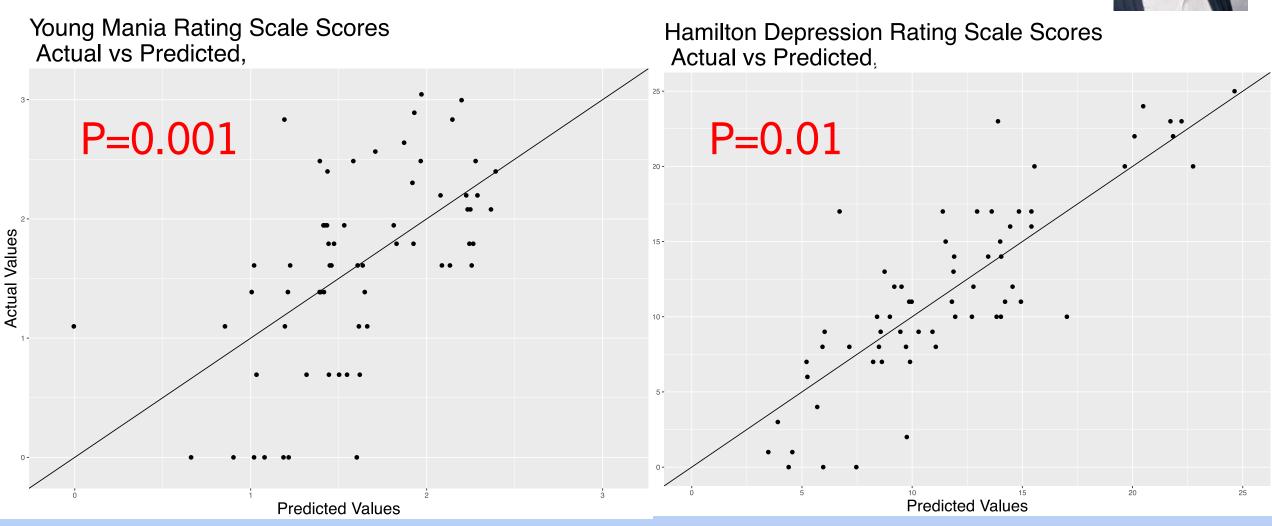


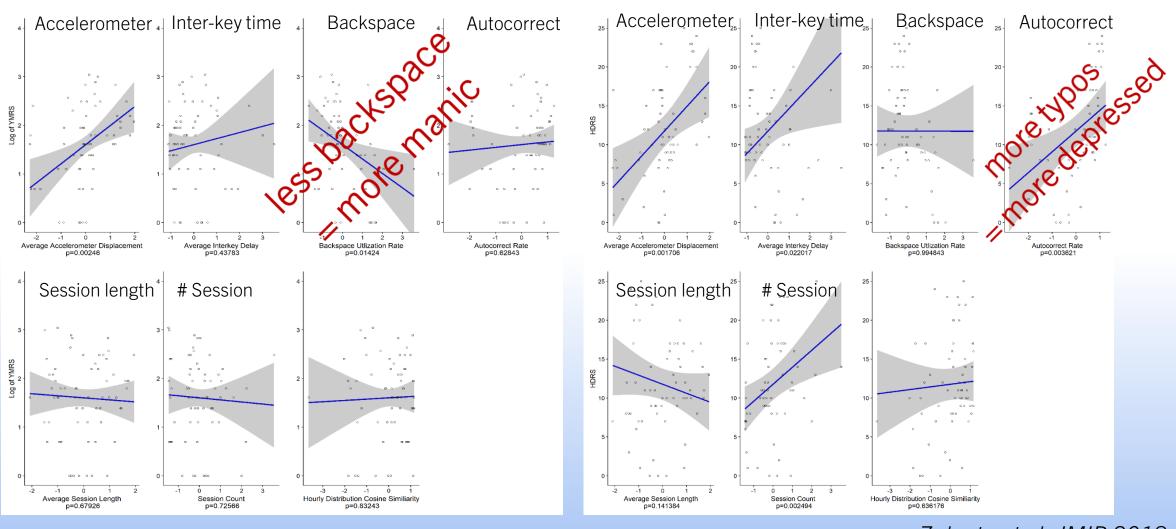
PASSIVE MONITORING OF MOOD AND REAL-TIME DIGITAL SAMPLING EMBEDDED

iOS BiAffect Keyboard

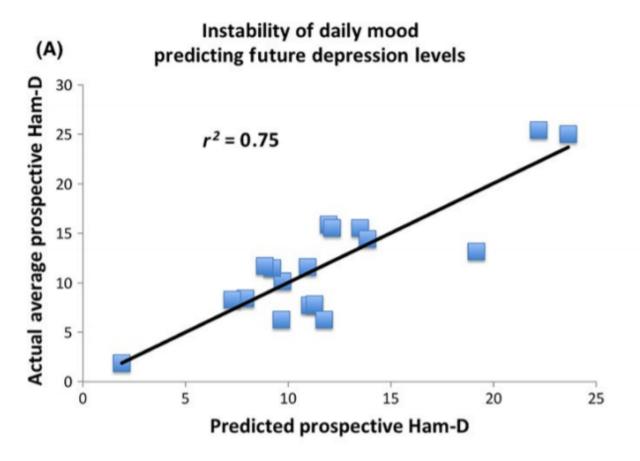
- The core is a custom keyboard that tracks **ALL** keystroke metadata in the background. E.g.,
- o Force of key presses measured by accelerometer
- Residence time
 - Backspace ratio

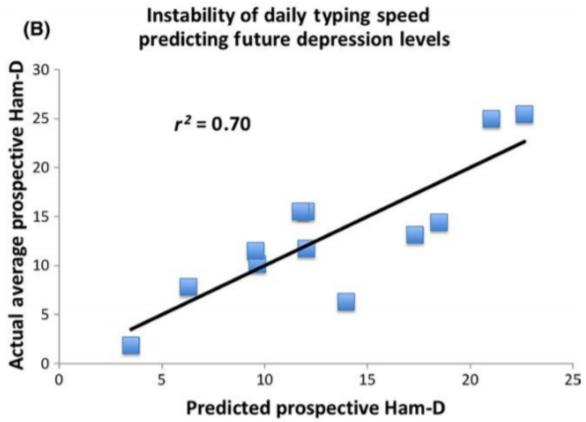
- Inter-key time o Auto-correction rate
- Character count
- Using both keystroke dynamics and iPhone sensor data, BiAffect builds a mathematical model that performs neuropsychological testing without actually testing.

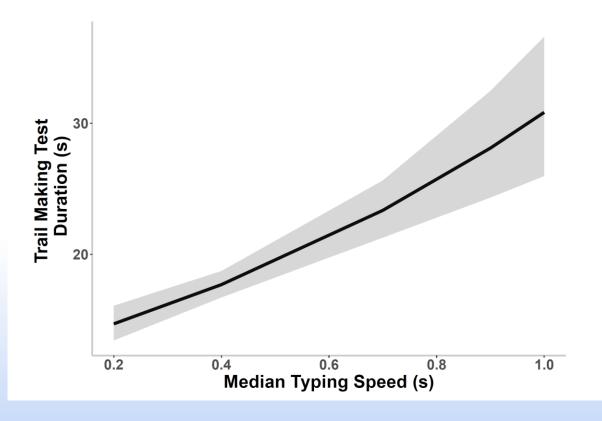


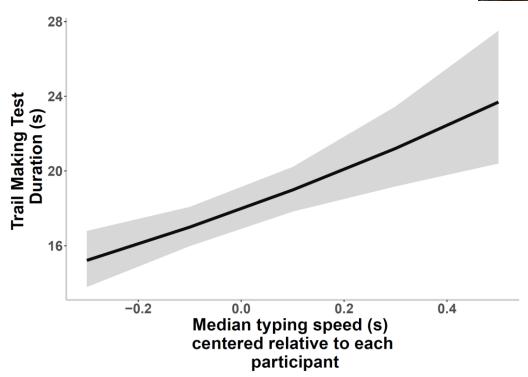


Zulueta et al, JMIR 2018

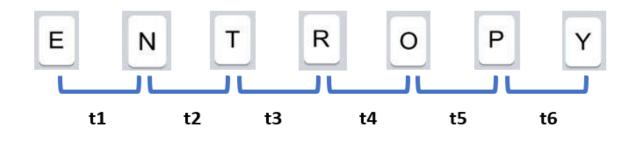




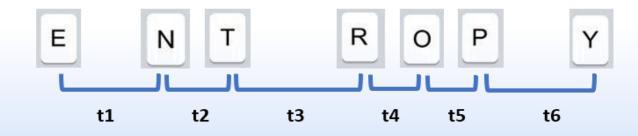




TIME-SERIES OF KEYPRESSES

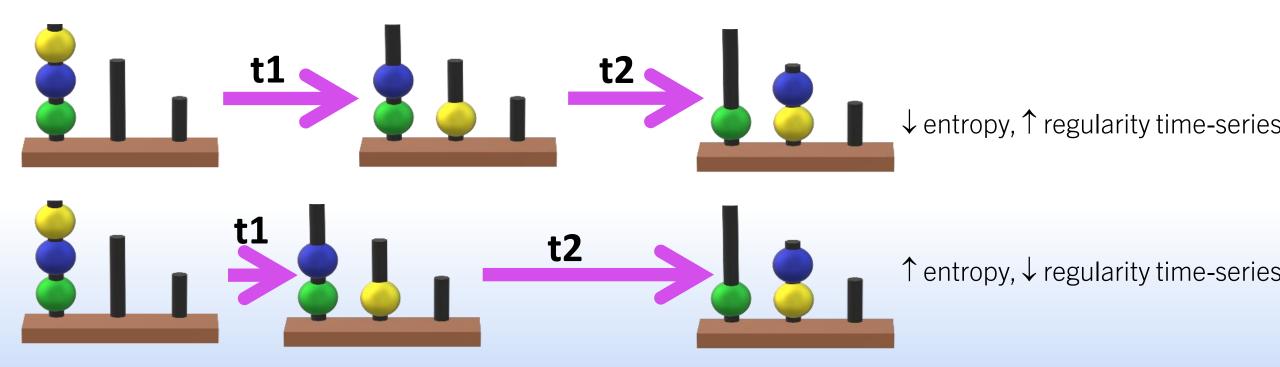


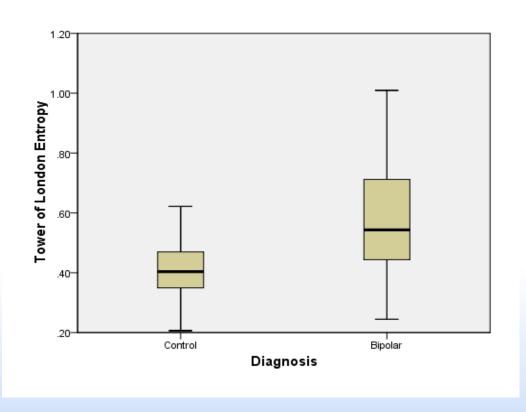
↓ entropy, ↑ regularity time-series

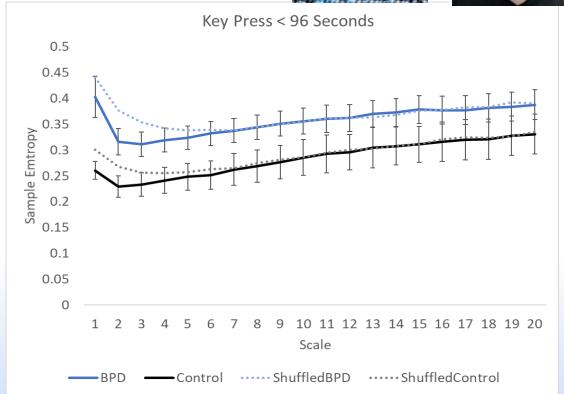


↑ entropy, ↓ regularity time-series

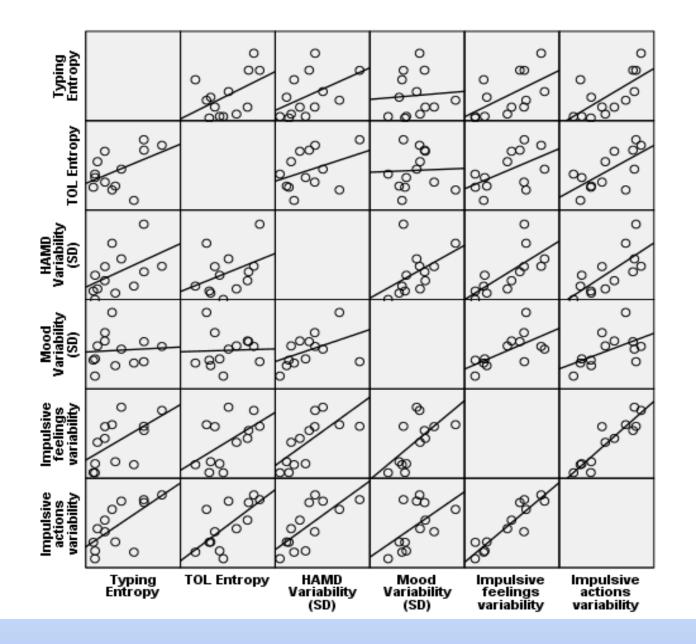
TIME-SERIES OF TOWER OF LONDON MOVES







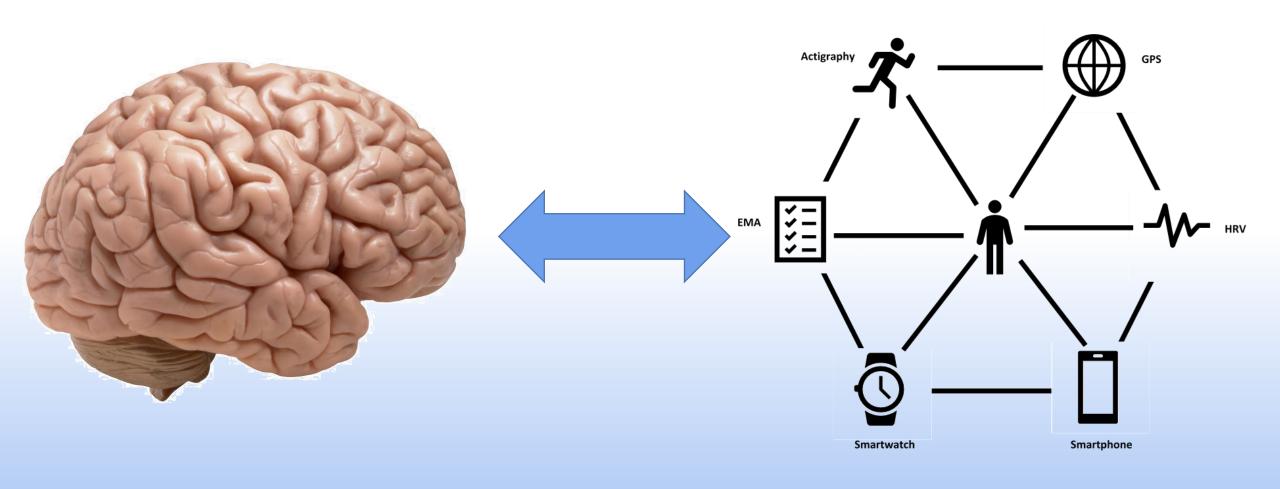
Participants with bipolar disorder demonstrate significantly increased entropy/decreased regularity in move times for the Tower of London task and in typing (p < .05)



In participants with bipolar disorder, **typing entropy** was significantly correlated:

- TOL entropy (r=.53,p=.03)
- HAMD variability (r=.5, p=.03)
- Variability in impulsive actions (r=.55, p =.04)
- Variability in impulsive feelings (r=.63, p=.02).

LINKING NEURAL AND DIGITAL SIGNATURES OF AFFECTIVE DISORDERS



UNOBTRUSIVE MONITORING OF AFFECTIVE SYMPTOMS AND COGNITION USING KEYBOARD DYNAMICS (UNMASCK)



UNMASCK - APPROACH

- Specific Aim 1. To evaluate whether keyboard dynamics prospectively predict brain network correlates of cognitive dysfunction in 132 participants (100 with mood disorders, 32 controls) using multimodal neuroimaging (diffusion imaging, task-based and resting functional imaging)
- Specific Aim 2. To evaluate whether keyboard dynamics prospectively predict changes in clinical mood symptoms in 132 participants (100 with mood disorders, 32 controls) (increased depressive and/or manic symptoms)
- Exploratory Aim. To examine whether the relationship between keyboard dynamics and clinical mood symptoms is mediated in a mechanistic way by alterations in brain network properties.

UNMASCK - APPROACH

Baseline
Assessment
(T0)

2 weeks of BiAffect 1st Scan 2ndAssessment (T1) 2 weeks of BiAffect 2nd Scan 3rd Assessment (T2)

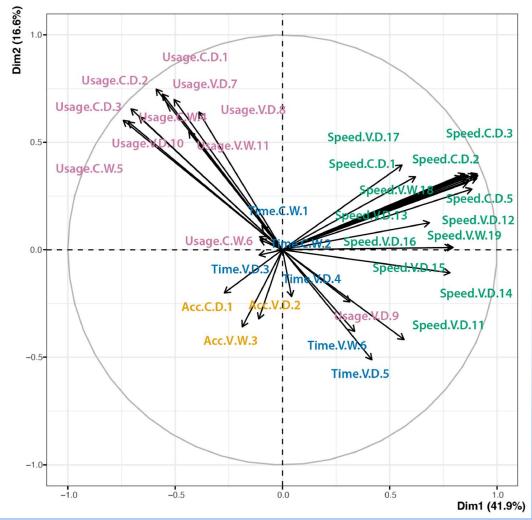
BIAFFECT METRIC	CONNECTOMIC CORRELATE	COGNITIVE DOMAIN/CONSTRUCT
Typing speed	Structural brain network Efficiency Interhemispheric Efficiency	Processing speed
Instability in typing speed	Reduced nodal efficiency in ventrolateral prefrontal cortex/altered modularity	Response inhibition
Backspace	Reduced nodal efficiency in anterior cingulate cortex	Performance monitoring
Autocorrect	Reduced nodal efficiency in salience networks	Attention

WHAT TYPING FEATURES MAP ONTO COGNITION?

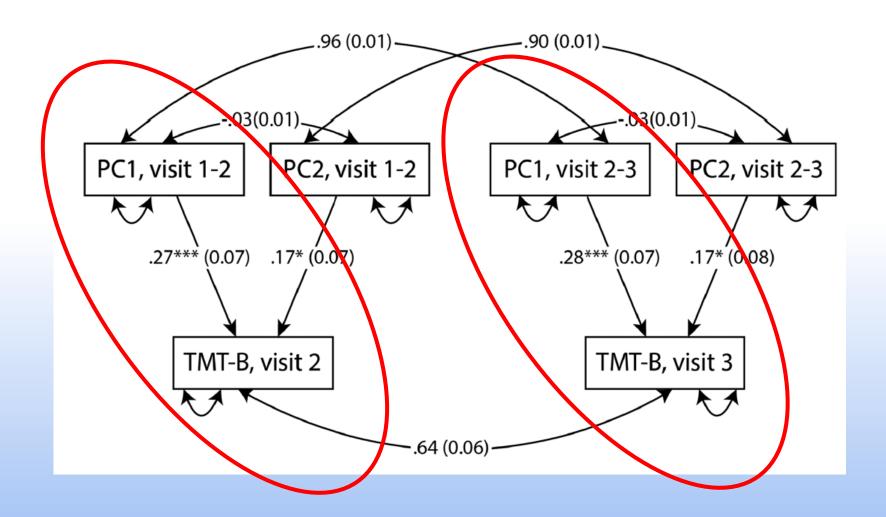
PRINCIPLE COMPONENT ANALYSIS OF TYPING

FEATURES

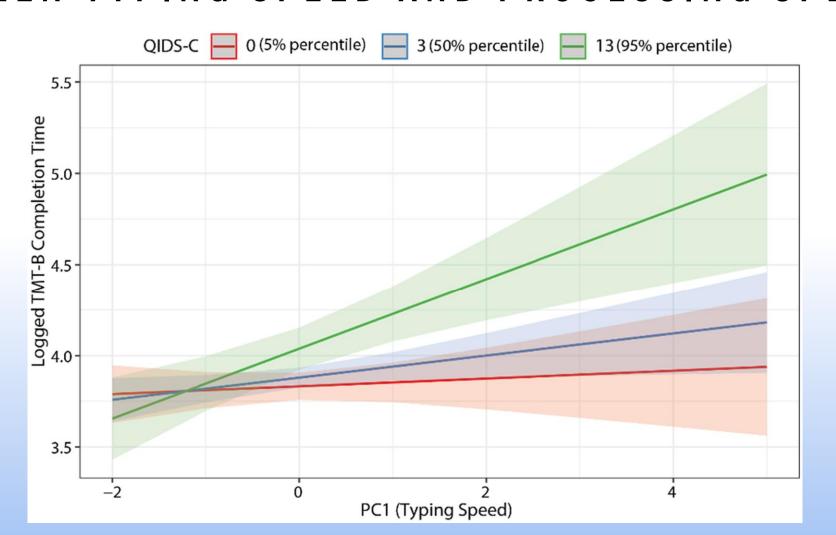
- PC1 Typing Speed
- PC2 Typing Volume



TYPING SPEED PREDICTS TMT-B PERFORMANCE



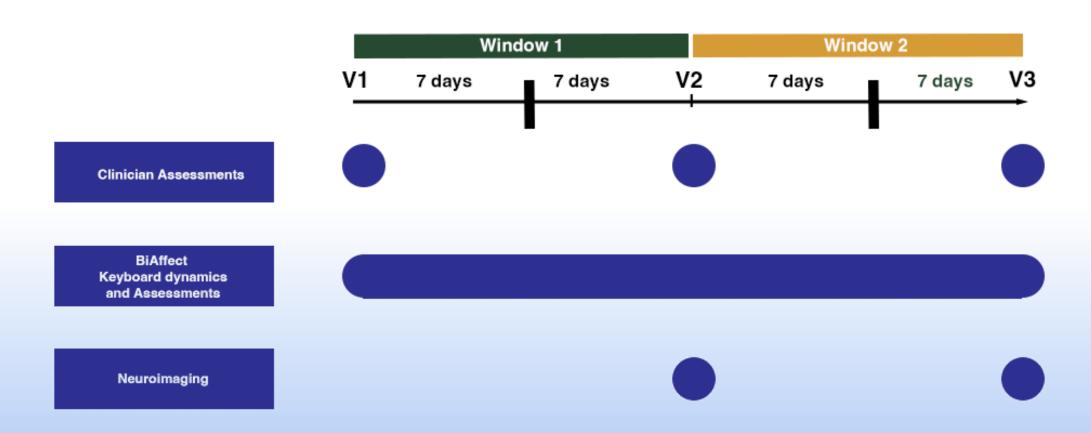
DEPRESSION MODERATES THE RELATIONSHIP BETWEEN TYPING SPEED AND PROCESSING SPEED



SUMMARY

- Typing features such as typing speed and typing volume predict processing speed
- The relationship between typing speed and processing speed is strongest for participants with more depressive symptoms

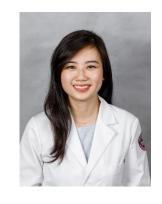
UNMASCK STUDY TIMELINE OVERVIEW:

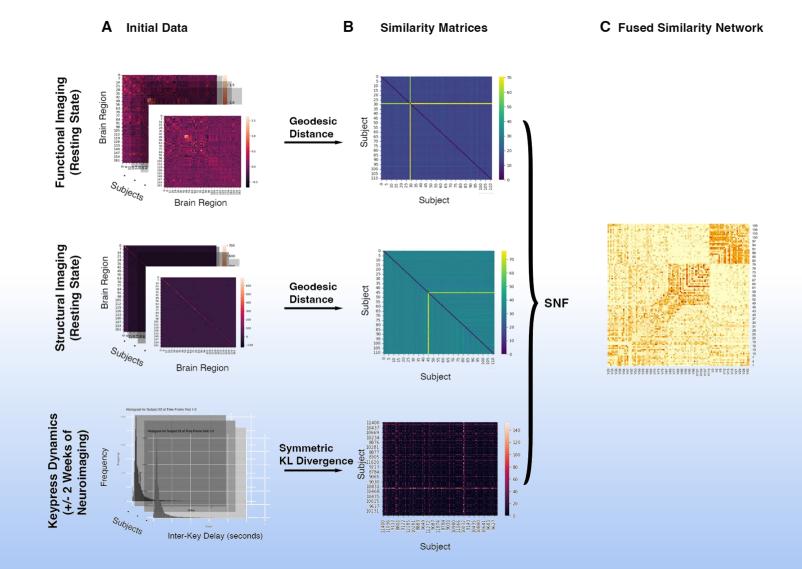


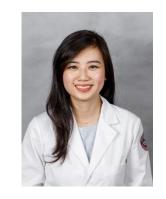
WHICH BRAIN NETWORKS ARE ASSOCIATED WITH TYPING FEATURES AND COGNITION?

Identify altered brain networks via digital phenotypes by extracting features from multimodal data sets (i.e., structural and functional neuroimaging and longitudinal keypress data) that can be associated with predicting differences in cognitive performance.

SIMILARITY NETWORK FUSION

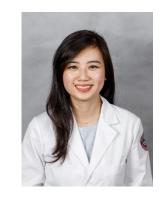






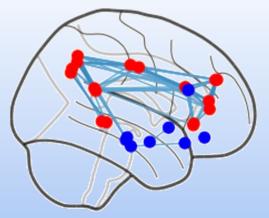
CLUSTER ANALYSIS RESULTS

- Inputs:
 - 1) Functional Neuroimaging Data
 - 2) Structural Neuroimaging Data
 - 3) Smartphone Keyboard Typing Data
- SNF clustered participants by similarity from all three inputs
- SNF → 3 clusters
- Examined cluster differences to use in a data driven approach for regression models



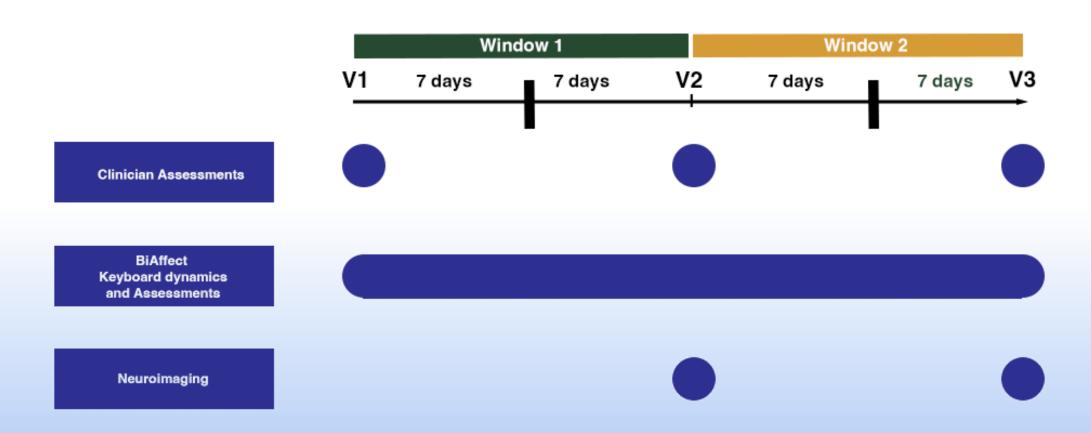
CLUSTER DIFFERENCES

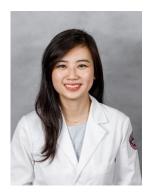
- Age
- Gender
- Typing Speed
- Cognitive Function
- Between-network Functional Connectivity (centered on salience network)

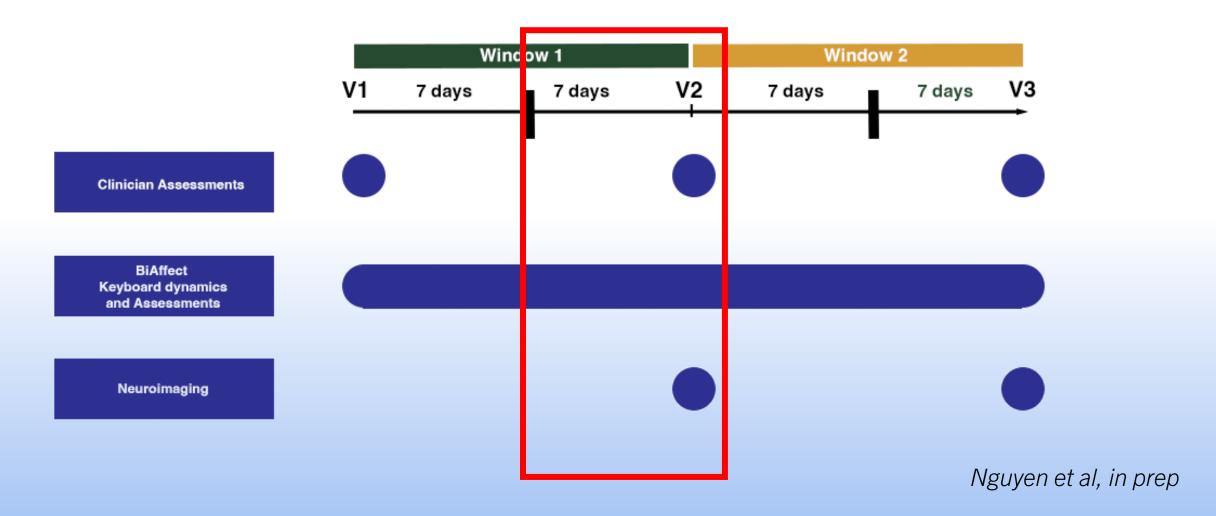


HOW DO THESE FEATURES RELATE TO EACH OTHER?

UNMASCK STUDY TIMELINE OVERVIEW:

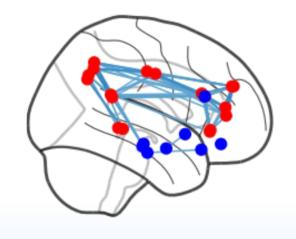


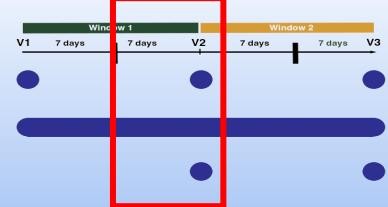




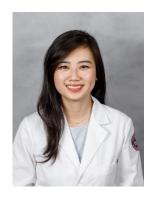
1 Week Before V2 median IKD

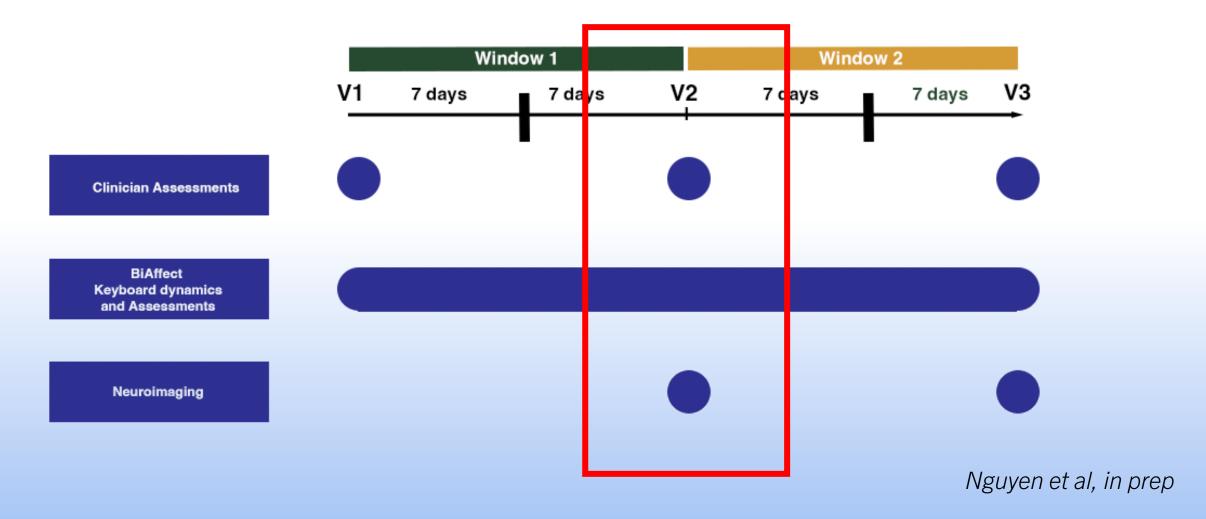
Predictors	log(IKD)				log(IKD)				log(IKD)			
	Estimatesstd. Beta		p	std. p	Estimatesstd. Beta		р	std. p	Estimatesstd. Beta		р	std. p
(Intercept)	-1.52	0.81	<0.001	<0.001	-1.48	0.87	<0.001	<0.001	-1.47	0.88	<0.001	<0.001
SN to DMN	-0.06	-0.09	0.009	0.008	-0.05	-0.07	0.025	0.023	-0.06	-0.09	0.026	0.025
age					0.12	0.17	<0.001	<0.001	0.12	0.17	<0.001	<0.001
gender [Female]					-0.09	-0.13	0.029	0.028	-0.10	-0.14	0.020	0.018
age × SN to DMN									0.02	0.03	0.408	0.343
gender [Female] × SN to)								0.04	0.05	0.366	0.388





TYPING SPEED IS ASSOCIATED WITH BRAIN CONNECTIVITY

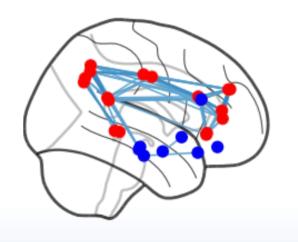


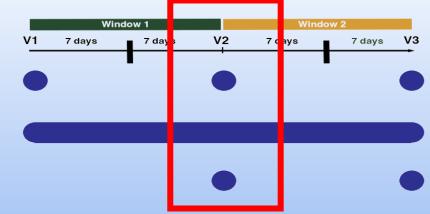


TYPING SPEED IS ASSOCIATED WITH BRAIN CONNECTIVITY

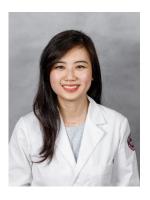
Week of V2 median IKD

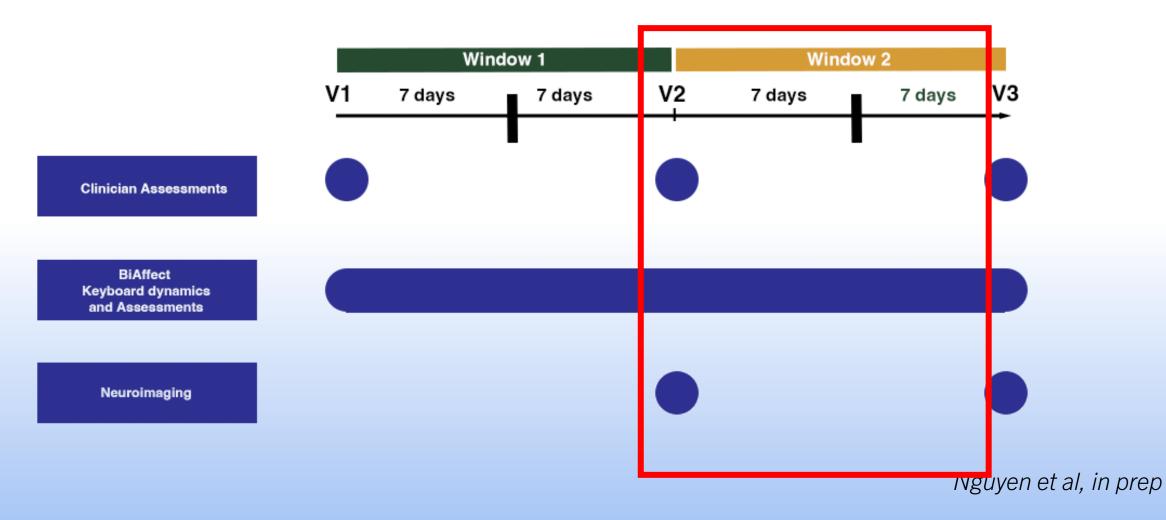
		log(IKD)			log(IKD)			log(IKD)	
Predictors	Estimates	sstd. Beta	р	std. p	Estimate	sstd. Beta	р	std. p	Estimates	sstd. Beta	п р	std. p
(Intercept)	-1.52	0.78	<0.001	<0.001	-1.49	0.83	<0.001	<0.001	-1.48	0.84	<0.001	<0.001
SN to DMN	-0.06	-0.09	0.012	0.010	-0.05	-0.07	0.035	0.029	-0.06	-0.08	0.051	0.045
age					0.12	0.17	<0.001	<0.001	0.12	0.17	<0.001	<0.001
gender [Female]					-0.07	-0.10	0.095	0.090	-0.08	-0.11	0.076	0.068
age × SN to DMN									0.02	0.03	0.514	0.425
gender [Female] × SN to	0								0.03	0.04	0.520	0.533

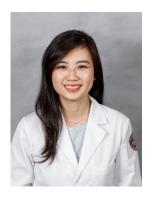




BRAIN CONNECTIVITY PREDICTS TYPING SPEED

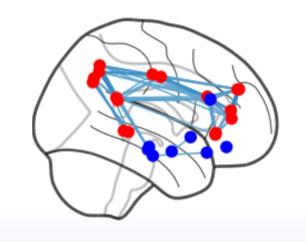


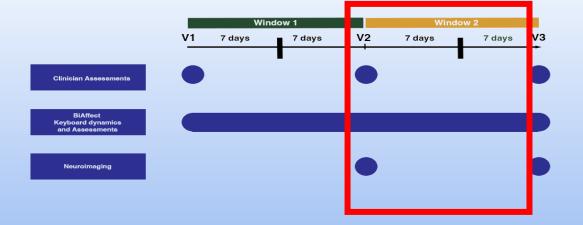




2 weeks after V2 median IKD

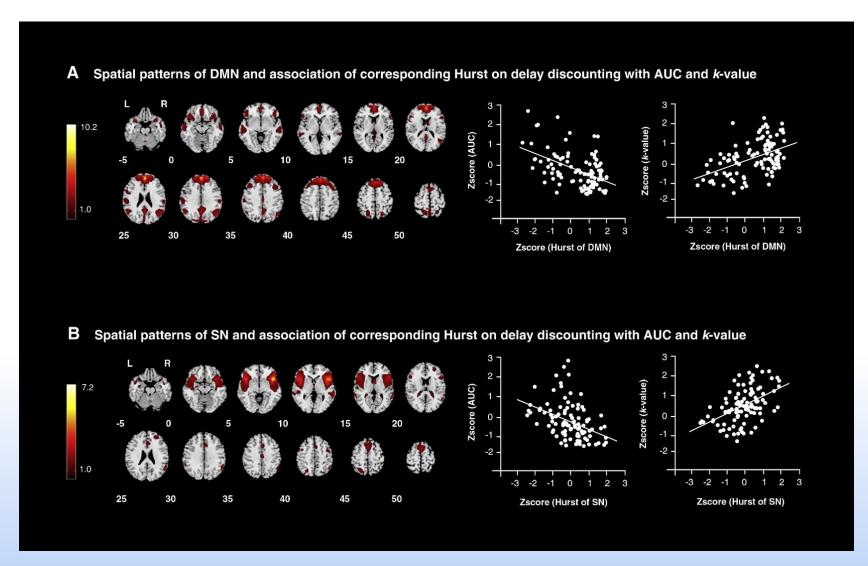
	log(IKD)				log(IKD)				log(IKD)				
Predictors	Estimates	std. Beta	р	std. p	Estimates	sstd. Beta	p	std. p	Estimates	std. Beta	p	std. p	
(Intercept)	-1.53	0.77	<0.001	<0.001	-1.50	0.82	<0.001	<0.001	-1.50	0.82	<0.001	<0.001	
SN to DMN	-0.08	-0.11	0.002	0.002	-0.06	-0.09	0.006	0.005	-0.08	-0.11	0.008	0.008	
age					0.13	0.19	<0.001	<0.001	0.13	0.19	<0.001	<0.001	
gender [Female]					-0.07	-0.10	0.107	0.099	-0.07	-0.11	0.095	0.081	
age × SN to DMN									0.01	0.02	0.782	0.619	
gender [Female] × SN to DMN	1								0.04	0.06	0.326	0.348	





SUMMARY

- Similarity Network Fusion can be used to model joint properties of neuroimaging and digital biomarkers to inform relevant clusters of participants that can identify linked features.
- The salience network may play a key role in linking typing dynamics to cognitive dysfunction in the context of mood disorders



Network dynamics of SN and DMN associated with delayed discounting

("Give me \$5 now, instead of \$50 in a week")

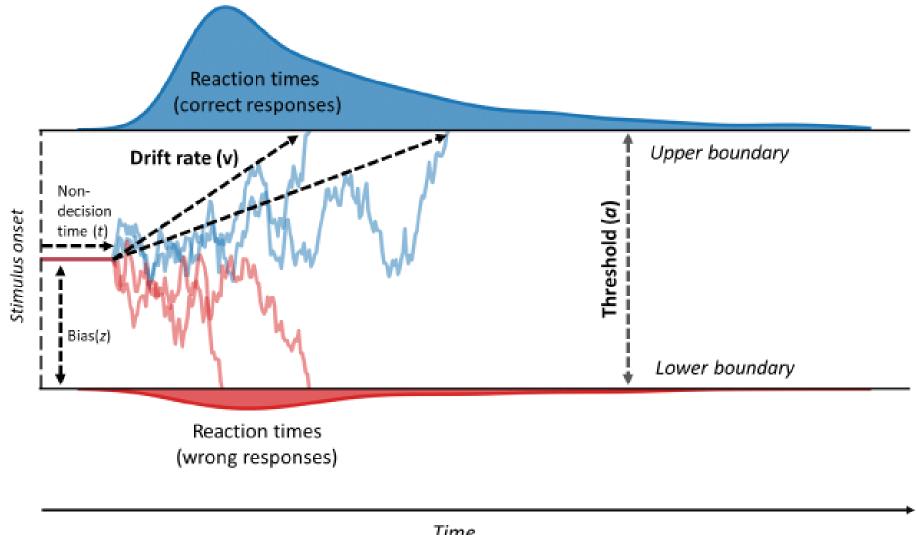
Major Depressive Disorder

Alcohol Use Disorder

Bipolar Disorder

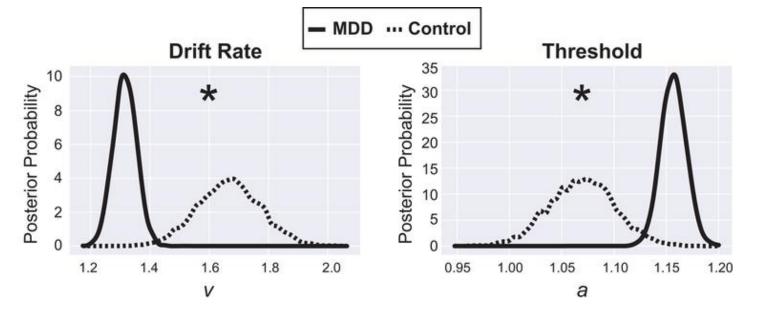
HIERARCHICAL DRIFT DIFFUSION MODEL (HDDM)

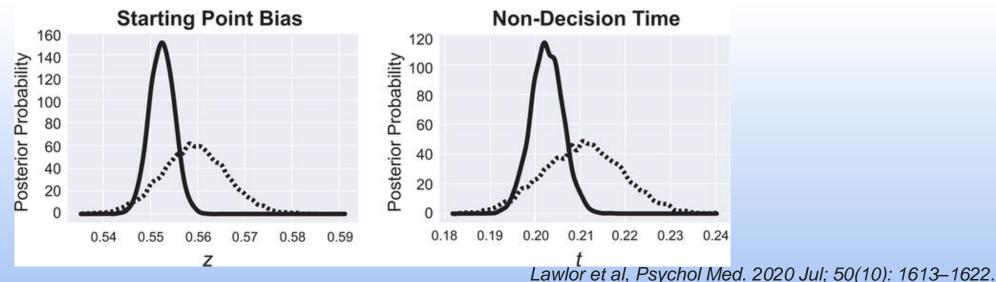
 Method to model aspects of decision-making Cautious vs impulsive Efficiency of evidence Perception and motor accumulation activity time Reaction times (correct responses) Stimulus onset Reaction times (wrong responses) Time Vinding et al (2018)



DISSECTING THE IMPACT OF DEPRESSION ON DECISION-

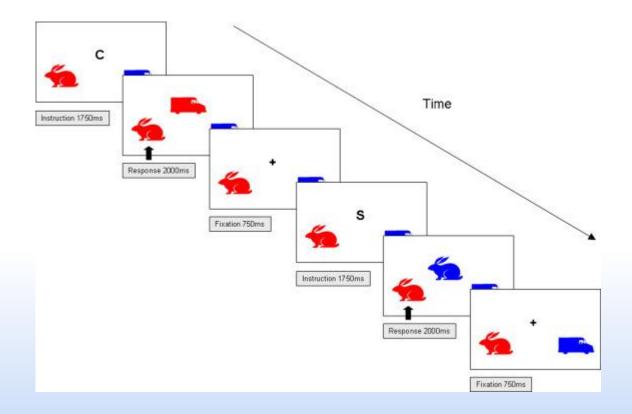
MAKING



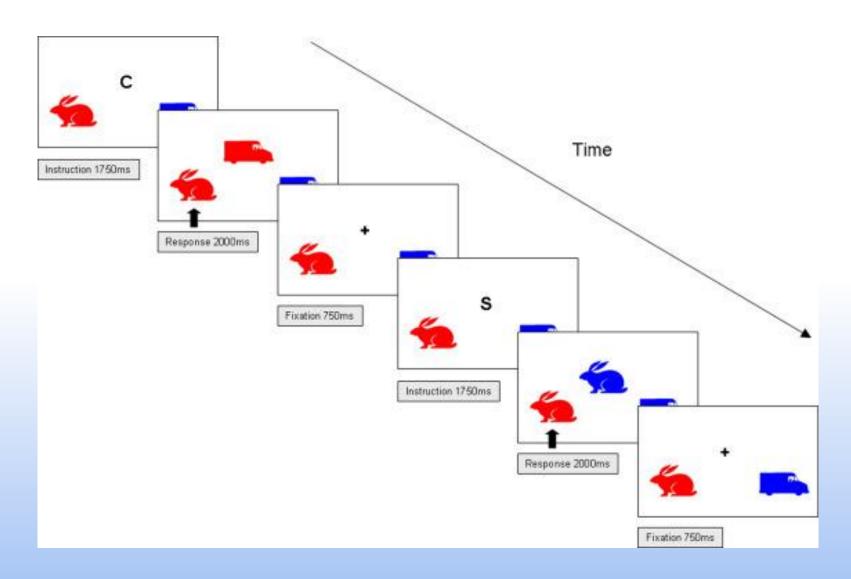


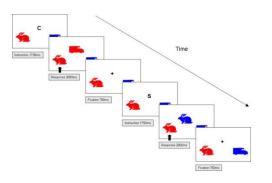
UNMASCK STUDY

Neuropsychological assessment
 Dimensional Change Card Sort

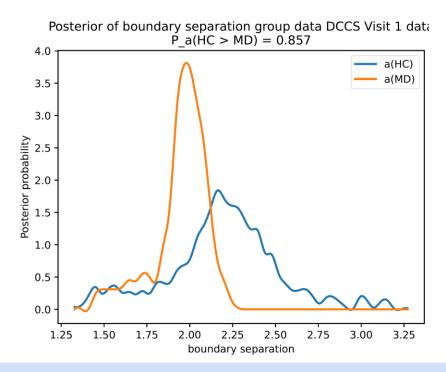


DIMENSIONAL CHANGE CARD SORT TASK (DCCS)

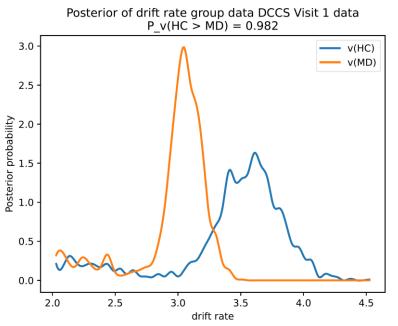




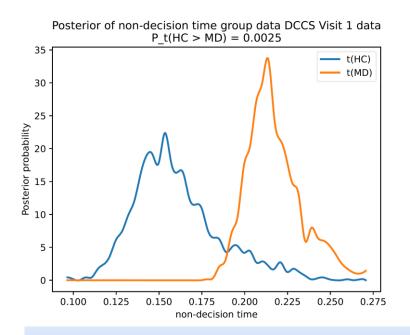
VISIT 1 RESULTS



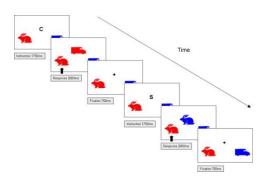
MD have smaller boundary separation compared to HC



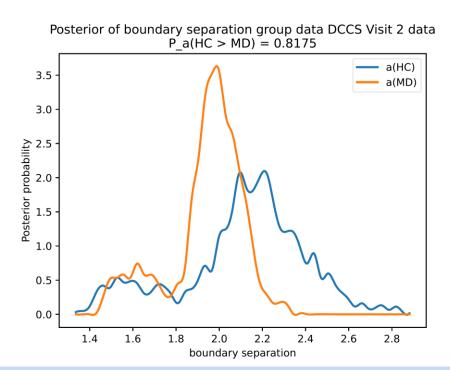
MD have slower drift rates compared to HC



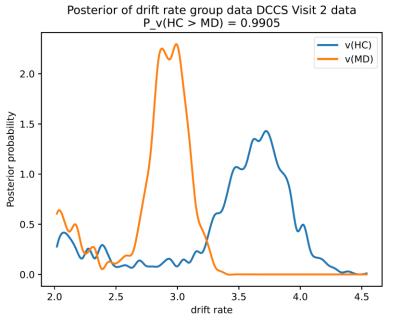
MD have slower non-decision times compared to HC



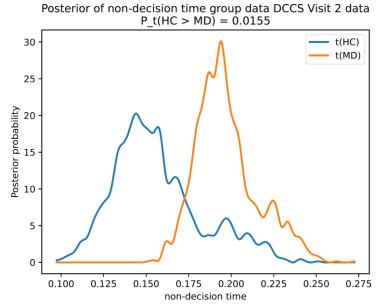
VISIT 2 RESULTS



MD have smaller boundary separation compared to HC



MD have slower drift rates compared to HC

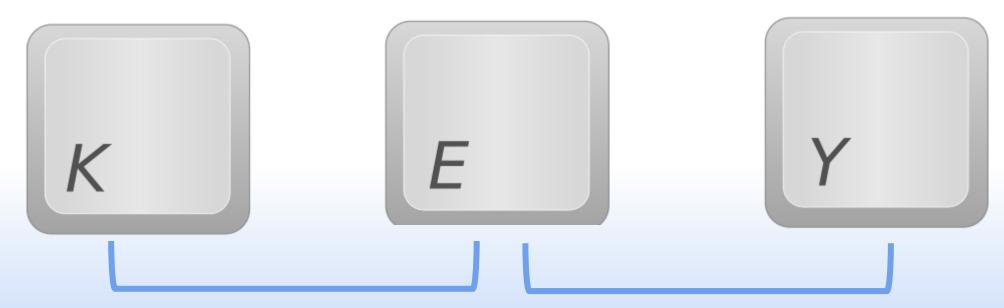


MD have slower non-decision times compared to HC

BIAFFECT TYPING DATA

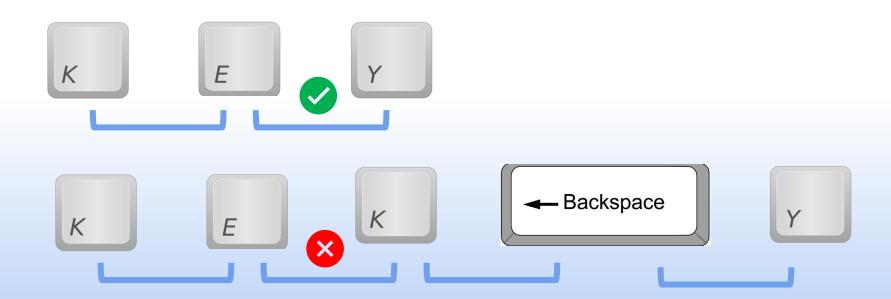
HOW CAN WE COMPARE THIS TO TYPING DATA?

• Typing speed measured by inter-key delay ~ reaction time

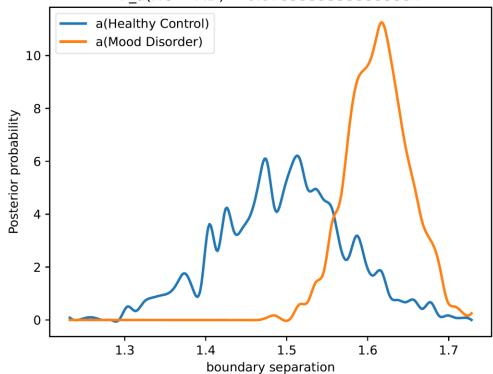


HOW CAN WE COMPARE THIS TO TYPING DATA?

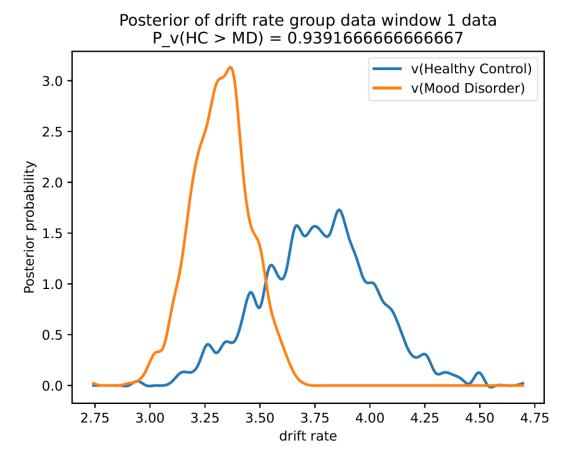
- Intended keypress "correct RT"
- Typo "incorrect RT"



WINDOW 1 RESULTS

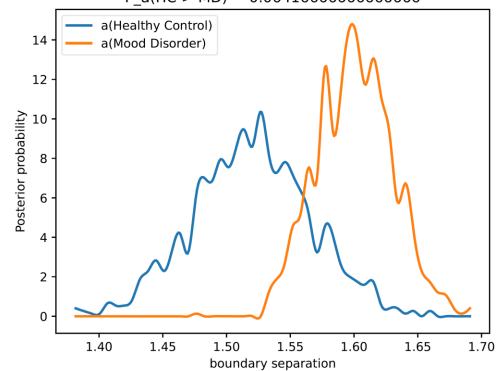


MD have wider boundary separations compared to HC

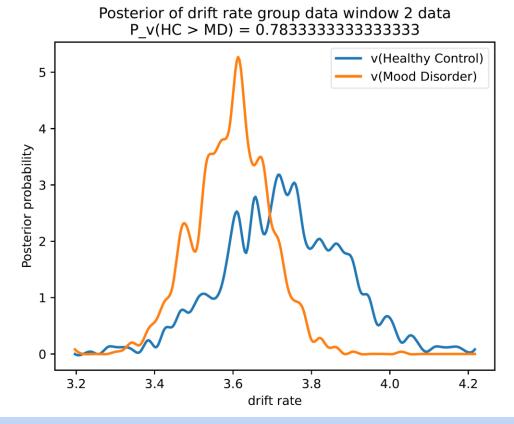


MD have slower drift rates compared to HC

WINDOW 2 RESULTS



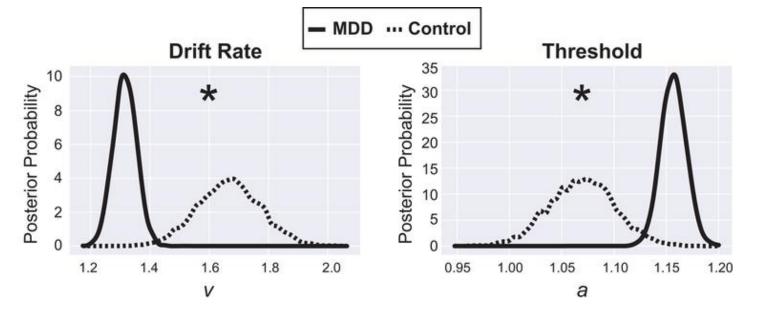
MD have wider boundary separations compared to HC

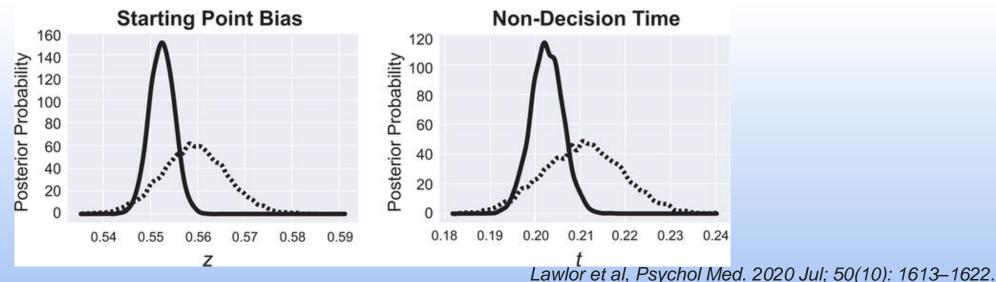


MD have slower drift rates compared to HC

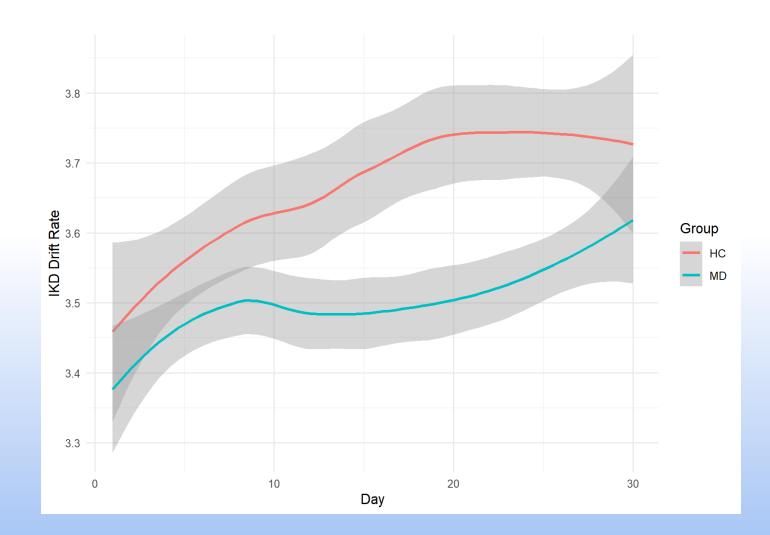
DISSECTING THE IMPACT OF DEPRESSION ON DECISION-

MAKING





DAILY DRIFT RATE



SUMMARY

 Aspects of decision-making derived from standard neuropsychological tests may be captured by passive, unobtrusively obtained naturalistic smartphone data

 Dense temporal sampling of keyboard data have the potential to be a daily measure of decisionmaking capacity

CONCLUSIONS

 Using passive sensing to track cognition has the potential to enhance precision is diagnosis and symptom tracking

• This may be particularly relevant for emerging subtypes of psychiatric disorders (i.e. cognitive biotypes of MDD)

ACKNOWLEDGEMENTS

- Alex Leow, MD, PhD
- Paul Thomas
- Jessica McAleer
- Mindy Ross
- Claudia Vesel
- Pete Nelson, PhD
- Faraz Hussain, MS, CRC
- Melvin McInnis, MD
- John Zulueta, MD
- Bokai Cao, PhD
- Steve Huang
- Philip Yu, PhD

- Jenna Duffecy, PhD
- Kelly Ryan, PhD
- Jonathan Stange, PhD
- Scott Langenecker, PhD
- Andrea Piscatello
- John Bark
- Alexander Demos, PhD
- NCATS UL1TR002003,
- NIMH R01-MH086517,R01 MH120168
- Luminary Labs/Robert Wood Johnson Foundation
- Patients and Participants!



CoNECt@UIC brain.uic.edu

